Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PLDI '21論文読み会: Provable Repair of Deep Neural N...
Search
Idein
June 08, 2022
Research
2
1.8k
PLDI '21論文読み会: Provable Repair of Deep Neural Networks
Idein
June 08, 2022
Tweet
Share
More Decks by Idein
See All by Idein
PLDI '21論文読み会: DNNFusion: Accelerating Deep Neural Networks Execution with Advanced Operator Fusion
ideininc
1
1.9k
PLDI '21論文読み会: AKG: Automatic Kernel Generation for Neural Processing Units using Polyhedral Transformations
ideininc
0
1.6k
PLDI '21論文読み会: Specification Synthesis with Constrainted Horn Clauses
ideininc
0
1.5k
PLDI '21論文読み会: Cyclic Program Synthesis
ideininc
0
1.6k
PLDI '21論文読み会: High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations
ideininc
0
1.5k
PLDI '21論文読み会: Quantum Abstract Interpretation
ideininc
0
1.5k
会社紹介資料/Idein株式会社
ideininc
0
50k
Other Decks in Research
See All in Research
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
920
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
11k
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
110
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
460
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
400
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.1k
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
4
2.1k
Remote sensing × Multi-modal meta survey
satai
4
640
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
180
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
450
Featured
See All Featured
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
340
Statistics for Hackers
jakevdp
799
230k
Agile that works and the tools we love
rasmusluckow
331
21k
Typedesign – Prime Four
hannesfritz
42
2.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
34
GitHub's CSS Performance
jonrohan
1032
470k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
Site-Speed That Sticks
csswizardry
13
1k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Transcript
1SPWBCMF3FQBJSPG%FFQ /FVSBM/FUXPSLT 1-%*ಡΈձ!*EFJO
Ϟνϕʔγϣϯ w %//͕TBGFUZDSJUJDBMͳྖҬʹΘΕग़͠͡Ίͨ w %//Ϟσϧ͕࣋ͭzVOTBGFͳڍಈͷݕग़ʹର͢Δಈػͱͳ͖ͬͯͨɽ w ྫ "EWFSTBSJBM&YBNQMFT w zVOTBGFͳڍಈz͕ݕग़͞Εͨޙͷɼ%//Ϟσϧͷzमਖ਼͕͍ͨ͠
w ͜ͷจɼ%//ੑ࣭ͷྑ͍ύονΛͯ ΒΕ ΔΈͱͦͷύον ͷߏ๏ʹ͍ͭͯͷఏҊ
طଘͷमਖ਼ํ๏ GJOFUVOJOH w 'JOFUVOJOH࣮ੈքͷӡ༻γφϦΦʹద߹͍͠ w ඇޮ w ݩʑͷσʔληοτ͕ࠓೖखͰ͖Δঢ়ଶɾ͔݅Θ͔Βͳ͍ w ৽ͨͳόά
҆શͰͳ͍ڍಈ ͷࠞೖ w ϋΠύϥνϡʔϯ͕ηϯγςΟϒ w ESBXEPXO fi OFUVOJOHʹΑΔ ݩʑຬͨ͞Ε͍ͯͨഺͷੑ࣭ͷݮগ
lमਖ਼zΞϧΰϦζϜʹٻΊΒΕΔੑ࣭ w ޮೳमਖ਼ͨ͠%//Ͱ͋Δ/`मਖ਼લͷ%///͕VOTBGFͳڍಈΛ͢Δೖྗσ ʔληοτ9ͷೖྗʹର͠ɼظ௨ΓৼΔ͏Α͏ʹमਖ਼͞ΕΔ w ൚Խੑೳ/9ͷೖྗʹࣅͨೖྗʹରͯ͠ɼظ௨ΓৼΔ͏Α͏ʹम ਖ਼͞ΕΔ w ہॴੑ/9ͷೖྗʹࣅͯͳ͍ೖྗʹରͯ͠ɼ/ͱಉ༷ʹৼΔ͏Α͏ मਖ਼͞ΕΔ
w ޮ/ʹର͠/`͕͢Έ͔ʹٻΊΒΕΔ
ఏҊख๏ w %FDPVQMFE%//T %%//T ΞʔΩςΫνϟͷಋೖ w ݩͷ%//ʹύον༻αϒܭࢉάϥϑΛޙ͚ͨ͠%// w 1SPWBCMF1PJOUXJTF3FQBJS w
%%//T্Ͱͷ༗ݶʹର͢Δࢦఆ୯ʹର͢ΔॏΈमਖ਼ w 1SPWBCMF1PMZUPQF3FQBJS w ˢͷ༗ݶΛತଟ໘ମͷू߹ແݶʹ֦ுͨ͠ͷ
1JFDFXJTFMJOFBS 18- ؔ w ͋ΔؔGͰ w EPNBJOΛ༗ݶݸͷଟ໘ମʹׂͰ͖Δ w ׂ֤ͨ͠EPNBJOຖʹGͱՁͳΞϑΟϯมG`͕ଘࡏ͢Δ w
ྫ3F-6-FBLZ3F-6ɼ3F-6ɼ$MJQ͔͠ΘΕ͍ͯͳ͍%//
Λ-1ʹؼண͍ͤͨ͞ɼ͕ w %//ඇઢܗͳ׆ੑԽؔΛ࣋ͭ w Γ͍ͨ͜ͱ 1PJOUXJTF3FQBJSͷϕʔεͱͳΔΞΠσΞ w 18-%//EPNBJOΛదʹׂ͢Δͱɼͦͷׂͨ͠ྖҬຖʹઢܗʹ ѻ͑Δ
w मਖ਼͍ͨ͠ೖྗσʔληοτ9தͷ֤͕ଐ͢ΔઢܗྖҬʹର͠ɼظ͢Δ ݁ՌͱͷؒͰ݅ࣜͱ͠ɼॏΈΛ࠷దԽ͢Δ-1Λղ͘
Λ-1ʹؼணͤ͞ΒΕͳ͍ɼ୯७ʹ w ॏΈΛม͑ΔͱEPNBJOͷׂ·ͨมΘͬͯ͠·͏ͨΊ w Մೳͳͷ׆ੑԽؔΛ࣋ͨͳ͍࠷ऴͷΈ w தؒʹΔͱμϝ
ׂ͕มΘͬͯ͠·͏ྫ Z3F-6 Y 3F-6 Y 3F-6 Y w Γ͍ͨमਖ਼ w
Yͷͱ͖㱡Z㱡 w Yͷͱ͖㱡Z㱡 w YˠIͷॏΈΛʹमਖ਼͢Δ ਤC ্ ͱׂ ਤCԼͷ3(#۠ؒ ม Θͬͯ͠·͍ظ௨ΓʹͳΒͳ ͍
%FDPVQMFE%//T w ݩͷ%//͔ΒՁͳͷΛػցతʹ ߏͰ͖Δɼͭͷαϒάϥϑ͔Βͳ Δߏͷ%// w "DUJWBUJPODIBOOFM w 7BMVFDIBOOFM w
ׂΛม͑ͣʹॏΈͷมߋ͚ͩө͞ ͤΒΕΔ
%FDPVQMFE%//T "DUJWBUJPODIBOOFM w ׂͷҡ࣋ͷͨΊ w ೖྗ͔Βݩͷ%//Ͱܭࢉ͠ɼमਖ਼ର ͷ݁ՌΛ7BMVFDIBOOFMͷରԠ ʹ͓͚Δܭࢉʹөͤ͞Δ w ͦΕҎ֎ݩͷ%//ͱҰॹ
%FDPVQMFE%//T 7BMVFDIBOOFM w -1ͷ݁ՌΛద༻͢Δଆ w "DUJWBUJPODIBOOFMͷରԠʹ͓͚ Δ݁ՌΛҎͬͯ׆ੑԽؔΛઢܗؔ Ͱஔ͖͑ͨͷ w 3F-6ͳΒPS
w Ұൠత 18-Ͱͳ͍׆ੑԽؔͷ ߹ ʹ+BDPCJBOͰ͍͍
%FDPVQMFE%//Tͷಛ w ྆$IBOOFMͷ֤ʹݩͷ%//ͷରԠͱಉ͡ॏΈ͕ೖ͍ͬͯΔͳΒɼ֤ೖ ྗʹ͓͍ͯݩͷ%//ͱ%%//֎ԆతʹՁͳؔ w ҙͷೖྗΛݻఆ͢Δͱ7BMVF$IBOOFMத͋ΔͷॏΈͷมߋʹରͯ͠ ઢܗ w ݩͷ%//͕18-ͷ߹ɼ%%//ͷ7BMVF$IBOOFMதͷॏΈͷมߋݩͷ 18-%//ͷઢܗྖҬΛม͑ͯ͠·͏͜ͱ͕ͳ͍
1SPWBCMF1PJOUXJTF3FQBJS w %//͔ΒՁͳ%%//Λߏ w %%//ʹରͯ͠ݩʑ%//ͷॏΈʹରͯ͠Γ͔ͨͬͨΑ͏ ʹ-1Ͱ7BMVFDIBOOFMͷॏΈΛʹ͍ͭͯղ͖ɼߋ৽͢Δ
मਖ਼ͷ֦ு w 1PJOUXJTF3FQBJSͰ༗ݶݸͷͷೖྗʹରͯͩͬͨ͠ w Yͷͱ͖㱡Z㱡 w Yͷͱ͖㱡Z㱡 w ೖྗΛͰͳ͘༗ݶݸͷ ತͳ
QPMZUPQF ͷVOJPO ͳྖҬͰදݱ͞ΕΔແݶ ʹ֦ு͍ͨ͠ w 㱡Y㱡ͷͱ͖㱡Z㱡
मਖ਼ͷ֦ுͷ1PJOUXJTF3FQBJSͷؼண w 1PMZUPQFͷྖҬͱEPNBJOׂͨ͠ઢܗྖҬͷJOUFSTFDUJPOΛऔΔ w ઢܗྖҬΛٻΊͯ͏ͷͰ18-%//ʹର͔ͯ͑͠͠ͳ͍ w *OUFSTFDUJPOͷ֤͚ͩΛݟ੍ͯʹ͢Ε͍͍ w ༗ݶݸͷʹର͢Δ੍ʹؼண͞ΕΔ w
1SPWBCMF1PJOUXJTF3FQBJSͰղ͚Δ
1SPWBCMF1PMZUPQF3FQBJS w Γ͍ͨमਖ਼ ࠶ܝ w 㱡Y㱡ͷͱ͖㱡Z㱡 w JOUFSTFDUJPOͷ֤͚ͩΛݟ֤ͯͰͷ੍ʹ͢Δ w
Y ͷͰ㱡Z㱡 w 1SPWBCMF1PJOUXJTF3FQBJS͢Δ
࣮ݧ݁Ռ 4RVFF[F/FU *NBHF/FU /BUVSBM"EWFSTBSJBM&YBNQMFT w 13͕ຊख๏Ͱ%SBXEPXO͕ϕετͷͷͷɼ'5͕'JOFUVOJOHɼ .'5 NPEJ fi FE
ͷΈͷ w && ffi DBDZ %%SBXEPXO 55JNF w 13 '5Ͱ&
·ͱΊ w ܇࿅ࡁΈ%//ϞσϧΛύονमਖ਼Ͱ͖Δख๏ΛఏҊ w ܇࿅࣌σʔληοτ͕ෆཁ w ESBXEPXOͳͲͷѱӨڹ͕গͳ͍ w -1Ͱޮྑ͘ղ͚Δ