Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GunosyにおけるABテスト
Search
ij_spitz
March 18, 2016
Technology
1
480
GunosyにおけるABテスト
2016/03/18
エムスリー x Gunosy Beer bash!(Gunosy.beer#2)
ij_spitz
March 18, 2016
Tweet
Share
More Decks by ij_spitz
See All by ij_spitz
GunosyにおけるABテストの全容
ij_spitz
3
2.2k
プロダクト改善のためのデータ分析入門
ij_spitz
1
93
これからの強化学習_3.1_3.2
ij_spitz
0
110
海外スタートアップにおけるA/Bテスト基盤の紹介
ij_spitz
9
17k
fitbitではじめるオープンデータ
ij_spitz
0
170
食べログデータから見る東新宿と西早稲田のランチ事情
ij_spitz
0
380
Linuxとファイル
ij_spitz
0
100
紳士なおじさんYeomanに学ぶ異性を落とす3つのテクニック
ij_spitz
0
210
Supporter Opinion
ij_spitz
0
68
Other Decks in Technology
See All in Technology
Design System Documentation Tooling 2025
takanorip
1
900
Microsoft Agent 365 を 30 分でなんとなく理解する
skmkzyk
1
170
2025 DORA Reportから読み解く!AIが映し出す、成果を出し続ける組織の共通点 #開発生産性_findy
takabow
3
1.1k
なぜ使われないのか?──定量×定性で見極める本当のボトルネック
kakehashi
PRO
1
660
Digitization部 紹介資料
sansan33
PRO
1
6.1k
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
210
pmconf2025 - 他社事例を"自社仕様化"する技術_iRAFT法
daichi_yamashita
0
390
プロダクトマネージャーが押さえておくべき、ソフトウェア資産とAIエージェント投資効果 / pmconf2025
i35_267
2
300
TOAMI~投網~: フィッシングハンター支援用ブラウザ拡張ツール / TOAMI ~Casting Net~: Browser Extension Tool for Supporting Phishing Hunters
nttcom
1
120
履歴テーブル、今回はこう作りました 〜 Delegated Types編 〜 / How We Built Our History Table This Time — With Delegated Types
moznion
15
9.3k
Flutter Thread Merge - Flutter Tokyo #11
itsmedreamwalker
1
140
こがヘンだよ!Snowflake?サービス名称へのこだわり
tarotaro0129
0
110
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.3k
Six Lessons from altMBA
skipperchong
29
4.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Building an army of robots
kneath
306
46k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.2k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
BBQ
matthewcrist
89
9.9k
Practical Orchestrator
shlominoach
190
11k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Transcript
石塚 淳(Gunosy Inc.) 2016 年 3 月 18 日 GunosyにおけるABテスト
第2回 エムスリー x Gunosy Beer bash!
2 ©Gunosy Inc. 自己紹介 • いしつか じゅん (@ij_spitz) • データ分析チーム
• 入社して1ヶ月半くらい • 前職はソーシャルゲームの分析基盤づくり • 今やっていることはABテスト、アドホック分析など
3 ©Gunosy Inc. 今日話すこと • GunosyとABテスト • ABテストのよくある失敗事例
4 ©Gunosy Inc. GunosyとABテスト • GunosyとABテスト • ABテストのよくある失敗事例
5 ©Gunosy Inc. GunosyとABテスト • Gunosyではあらゆる機能のリリースやアップデー トにABテストを利用している ◦ 記事配信ロジック ◦
UI / UX
6 ©Gunosy Inc. GunosyとABテスト • なぜやるか ◦ 数字は神より正しい ▪ HiPPOに流されないフェアな指針
◦ 施策を定量的に評価するため ▪ 平均への回帰に惑わされない
7 ©Gunosy Inc. ABテストのよくある失敗事例 • GunosyとABテスト • ABテストのよくある失敗事例
8 ©Gunosy Inc. AAテスト • AAテストとは ◦ テスト対象と比較対象に同じパターンを出して、 値のばらつきを確認するテスト •
AAテストをしないとどうなる? ◦ 値の上がり下がりが誤差によるものなのか判断 できない ◦ 誤った判断につながる
9 ©Gunosy Inc. データ通信速度 • データ通信速度が与える影響 ◦ Amazonでは読み込み時間が0.1秒減ると、売 上が1%増加する(2006年Amazon公表) •
気をつけるポイント ◦ デザインや画像の変更 ◦ APIを叩く回数の変更
10 ©Gunosy Inc. 希薄化(dilution) • すべてのユーザーが目的の機能を利用するわけで はない 50% 10% 全ユーザーの50%に公開
目的の機能を利用したユーザーは 50%中の20% 全体の10%が目的の機能を利用したユーザーになる
11 ©Gunosy Inc. 希薄化(dilution) • 気をつけるポイント ◦ 対象となるABのサイズをあらかじめ想定しておく ◦ 集計時に指標を一人当たりで補正するときは機
能を利用したユーザーに限定する
12 ©Gunosy Inc. バイアス • テスト対象にのみに特定の条件が満たされてしまう (条件にバイアスが掛かってしまう) 図はTwitterのエンジニアブログから引用
13 ©Gunosy Inc. 最後に • もっとABテストについて知りたい方はこちら ◦ The Twitter Engineering
Blog ▪ https://blog.twitter.com/tags/experiments?blog=engineering ◦ LinkedIn Engineering Blog ▪ https://engineering.linkedin.com/blog/topic/ab-testing