Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
プロダクト改善のためのデータ分析入門
Search
ij_spitz
September 27, 2017
Technology
1
78
プロダクト改善のためのデータ分析入門
ij_spitz
September 27, 2017
Tweet
Share
More Decks by ij_spitz
See All by ij_spitz
GunosyにおけるABテストの全容
ij_spitz
3
2.1k
これからの強化学習_3.1_3.2
ij_spitz
0
100
海外スタートアップにおけるA/Bテスト基盤の紹介
ij_spitz
9
17k
GunosyにおけるABテスト
ij_spitz
1
460
fitbitではじめるオープンデータ
ij_spitz
0
160
食べログデータから見る東新宿と西早稲田のランチ事情
ij_spitz
0
340
Linuxとファイル
ij_spitz
0
83
紳士なおじさんYeomanに学ぶ異性を落とす3つのテクニック
ij_spitz
0
190
Supporter Opinion
ij_spitz
0
59
Other Decks in Technology
See All in Technology
東京Ruby会議12 Ruby と Rust と私 / Tokyo RubyKaigi 12 Ruby, Rust and me
eagletmt
3
870
KMP with Crashlytics
sansantech
PRO
0
240
2025年に挑戦したいこと
molmolken
0
160
CDKのコードレビューを楽にするパッケージcdk-mentorを作ってみた/cdk-mentor
tomoki10
0
210
RubyでKubernetesプログラミング
sat
PRO
4
160
AWS Community Builderのススメ - みんなもCommunity Builderに応募しよう! -
smt7174
0
180
EMConf JP の楽しみ方 / How to enjoy EMConf JP
pauli
2
150
メンバーがオーナーシップを発揮しやすいチームづくり
ham0215
2
150
新卒1年目、はじめてのアプリケーションサーバー【IBM WebSphere Liberty】
ktgrryt
0
130
あなたの人生も変わるかも?AWS認定2つで始まったウソみたいな話
iwamot
3
860
いま現場PMのあなたが、 経営と向き合うPMになるために 必要なこと、腹をくくること
hiro93n
9
7.8k
【JAWS-UG大阪 reInvent reCap LT大会 サンバが始まったら強制終了】“1分”で初めてのソロ参戦reInventを数字で振り返りながら反省する
ttelltte
0
140
Featured
See All Featured
A Philosophy of Restraint
colly
203
16k
Facilitating Awesome Meetings
lara
51
6.2k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Unsuck your backbone
ammeep
669
57k
A Modern Web Designer's Workflow
chriscoyier
693
190k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.1k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.6k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3.1k
Building Adaptive Systems
keathley
38
2.4k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
500
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
19
2.3k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.8k
Transcript
プロダクト改善のためのデータ分析⼊⾨ Gunosy Inc. 2017.9.27 Confidential
2 ©Gunosy Inc. ⾃⼰紹介 • ⽯塚 淳(いしつか じゅん) • 株式会社Gunosy
• 開発本部データ分析部 • 東京⼤学⼯学部卒 • 坂⽥・森研究室 • 某ソシャゲ会社に新卒⼊社 • データ分析基盤の開発を担当 • エンジニア業務がメイン • 2016年2⽉に株式会社Gunosyに⼊社 • グノシーのデータ分析を担当
3 ©Gunosy Inc. 今⽇話すこと • Gunosy/データ分析部のやっていること • データの収集⽅法 • ログ収集基盤
• 分析基盤 • データの活⽤⽅法 • 記事配信ロジック • KPI管理 • プロダクト開発
4 ©Gunosy Inc. Gunosyとは • グノシーは、データとアルゴリズムの会社 • 「情報を世界中の⼈に最適に届ける」がミッション • ニュースアプリだけの会社ではない
• 動画、商品、広告
5 ©Gunosy Inc. データ分析部とは • データ • ユーザ⾏動のデータを解析し施策に落とし込み、効果を検証する
6 ©Gunosy Inc. データ分析部とは • アルゴリズム • ユーザにコンテンツを適切な形で情報を伝える
7 ©Gunosy Inc. 今⽇話すこと • Gunosy/データ分析部のやっていること • データの収集⽅法 • ログ収集基盤
• 分析基盤 • データの活⽤⽅法 • 記事配信ロジック • KPI管理 • プロダクト開発
8 ©Gunosy Inc. データの収集⽅法 • Gunosyのログ基盤は⼤きく2つ • 確定値ログ基盤 • KPIダッシュボード
• 記事配信アルゴリズム • データ分析 • 速報値ログ基盤 • 速報⽤KPI(Hourly Active User, ⼈気記事) • 記事配信アルゴリズム
9 ©Gunosy Inc. データの収集⽅法 • 今回は確定値のログ基盤のみ紹介 • 確定値ログ基盤 • KPIダッシュボード
• 記事配信アルゴリズム • データ分析 • 速報値ログ基盤 • 速報⽤KPI(Hourly Active User, ⼈気記事) • 記事配信アルゴリズム
10 ©Gunosy Inc. 確定値ログ基盤 ©Gunosy Inc. X ֬ఆϩάج൫ Redshift ϩάαʔόʔ
S3 SQS ίϯόʔλʔ Fluentd BigQuery KPIόον αʔόʔ μογϡϘʔυ
11 ©Gunosy Inc. KPIダッシュボード • Redash • 様々なデータ・ソースに統⼀的にアクセスできる可視化ツール • SQLで完結
• Web画⾯でポチポチするとグラフ表⽰できる • ホスティングサービスが存在 • ⾃社運⽤Djangoダッシュボード • フルスクラッチ実装なので、⾃由度は⾼い • いにしえより利⽤ • SQLで完結しない指標を⾒るときに実装
12 ©Gunosy Inc. データ分析基盤 • BIツール + DB • 基本はRedashでRedshiftやBigQueryを叩く
• 複雑な処理や機械学習モデルを使⽤した分析はJupyterで ©Gunosy Inc. X σʔλੳج൫ Redshift BigQuery Pandas
13 ©Gunosy Inc. ここからが本題、データの活⽤⽅法 • ログ基盤が整って、SQLやJupyterからデータを取得できる環境が揃った • ここまでの⼯程はWeb上にも豊富に存在 • AWSやGCPのお陰でそこまで⼿間は掛からない
• で、この後どうするの︖︖︖ • とりあえずKPIでも可視化してみる︖ • 機械学習で◯◯予測してみたい
14 ©Gunosy Inc. 今⽇話すこと • Gunosy/データ分析部のやっていること • データの収集⽅法 • ログ収集基盤
• 分析基盤 • データの活⽤⽅法 • 記事配信ロジック • KPI管理 • プロダクト開発
15 ©Gunosy Inc. 記事配信ロジック • グノシーの記事配信ロジックの概要
16 ©Gunosy Inc. 記事配信ロジック • 詳細はブログで
17 ©Gunosy Inc. KPI管理 • KPIをいくつかの要素に分解してモニタリング • 予実を⽇次で管理 • 分解の1例
• 売上 • DAU • 新規獲得数 • 継続率 • Sales/DAU(ARPU) • AdImpSales/DAU • AdClickSales/DAU
18 ©Gunosy Inc. Redashによるダッシュボード • 分解したKPIを⼀覧できるダッシュボードをRedashで作成 • 先ほどのKPIツリーを意識した構成 • 予算に対する実績の確認
19 ©Gunosy Inc. 数値を⾒る仕組み • データ分析部では2つの朝会を実施している • 開発部朝会 • グノシー、ニュースパスそれぞれの開発部で実施
• 昨⽇やったこと、今⽇やること、共有事項の確認 • 数値確認朝会 • データ分析部で実施 • 各プロダクトのKPIを確認 • 数値に異常があれば、朝会後詳細な調査を実施 • 例えば • 1⽇後継続率が下がった • エンタメタブのクリック数が下がった
20 ©Gunosy Inc. プロダクト開発 • グノシーのプロダクト改善は現状の数値の把握から始まる • とはいえ現状の把握だけではなく、仮説・検証・意思決定も含んだ分析が⼤切 • 悪い例
• グノシーユーザの⼥性割合は45%だが、⼣⽅の利⽤ユーザに絞ると、 70%が⼥性である。 • 良い例 • グノシーユーザの⼥性割合は45%だが、⼣⽅の利⽤ユーザに絞ると、 70%が⼥性である。なので、⼣⽅に登録したユーザには、⼥性に⼈気 のコンテンツを多く表⽰させてみて、継続率に変化があるか試してみ る。
21 ©Gunosy Inc. プロダクト開発のサイクル
22 ©Gunosy Inc. 仮説を出すためのヒント • 施策を⾏うためのヒントを事前の分析から得る • 失敗から学ぶ • 重要な数値をモニタリングし、下がった原因を探る(前述のKPI管理参照)
• 他プロダクト事例 • 他社のABテストが100%適⽤になった、撤退した • ニュースパス、ルクラ、バザリー、ビデレーからの輸⼊ • ユーザ間の⽐較 • OS、獲得経路別、ユーザが最初に使った機能ごとのKPIを⽐較 • ⼤切な数値と相関の⼤きな数値 • ある⾏動の回数が⾼いと、重要な数値も⾼くなる傾向がある
23 ©Gunosy Inc. ABテストによる効果測定と意思決定 • ABテストによる意思決定の徹底 • 1⽇に⾛っているABテストは約20個(グノシーのみ) • ABテストによるメリット
• 施策の効果検証 • ニュースアプリなので、時事性や季節の変動を受けやすいので、効果 の計測がしづらい • 意図しない数値の低下、ユーザービリティの低下を防ぐ • インフラの変更 • アプリのリリース • Androidは段階的リリースを実施している
24 ©Gunosy Inc. 2 効果測定 よくない例
25 ©Gunosy Inc. 2 効果測定 よくない例 機能リリース
26 ©Gunosy Inc. 2 効果測定 よくない例 機能リリース ⼤きなイベント発⽣
27 ©Gunosy Inc. 2 効果測定 よくない例 機能リリース ⼤きなイベント発⽣ 前より低い…?
28 ©Gunosy Inc. ABテストによる効果測定と意思決定 • ABテストによる意思決定の徹底 • 1⽇に⾛っているABテストは約20個(グノシーのみ) • ABテストによるメリット
• 施策の効果検証 • ニュースアプリなので、時事性や季節の変動を受けやすいので、効果 の計測がしづらい • 意図しない数値の低下、ユーザービリティの低下を防ぐ • インフラの変更 • アプリのリリース • Androidは段階的リリースを実施している
29 ©Gunosy Inc. 2 効果測定 ABテストの例 • 特定のユーザ群にUIやアルゴリズムを出し分けるテストを⾏う Test A
Test B クリック率 5% 6% 滞在時間 30 35
30 ©Gunosy Inc. 3 この例の場合であれば Test Bを全体に適応 (※)実際は複数の指標を見ている 効果測定 ABテストの例
• 特定のユーザ群にUIやアルゴリズムを出し分けるテストを⾏う Test A Test B クリック率 5% 6% 滞在時間 30 35
31 ©Gunosy Inc. 3 効果測定 ABテストの例 機能リリース ⼤きなイベント発⽣ 前より低い…? この例の場合であれば
Test Bを全体に適応 (※)実際は複数の指標を⾒ている
32 ©Gunosy Inc. ABテストによる効果測定と意思決定 • ABテストは1%公開から開始して100%まで段階的に割合を引き上げていく • グノシーで⼀般的なABテストだと1%から100%までに1, 2ヶ⽉掛かる •
割合ごとに⾒る数値と期間は異なる • 1%(1 ~ 3⽇) • ⼤幅な数値低下や不具合がないか • 5%、10%(7⽇) • 期待したKPIは向上しているか • 20%(14⽇) • 継続率
33 ©Gunosy Inc. 意思決定 • グノシーマンガ撤退におけるケーススタディ • ユニットエコノミクスの検証 • Pros
• マンガ獲得ユーザー • LTVとCPI • ⾮マンガ獲得ユーザー • マンガによる継続率、Salesの上昇 • Cons • コンテンツ費⽤、サーバー代