→ (A → C)) ((((A → B) → (¬C → ¬D)) → C) → E) → ((E → A) → (D → A)) ¬(A ∧ ¬A) (A ∧ ¬A) → B ((A → B) → A) → A ¬¬A → A (A → B) ↔ (¬B → ¬A) ¬(A ∧ B) ↔ (¬A ∨ ¬B) ¬(A ∨ B) ↔ (¬A ∧ ¬B)
C)) ((((A → B) → (¬C → ¬D)) → C) → E) → ((E → A) → (D → A)) ¬(A ∧ ¬A) (A ∧ ¬A) → B ((A → B) → A) → A ¬¬A → A (A → B) ↔ (¬B → ¬A) ¬(A ∧ B) ↔ (¬A ∨ ¬B) ¬(A ∨ B) ↔ (¬A ∧ ¬B) Examples of Tautology Law of Contradiction Principle of Explosion Double Negation Elimination Peirce’s Law Law of Contraposition De Morgan’s Laws Transitive Law Meredith’s Axiom
→ B) (A → (B → C)) → ((A → B) → (A → C)) ¬¬A → A A → A ∨ B ⊥ → A B → A ∨ B (A → C) → ((B → C) → ((A ∨ B) → C)) A ∧ B → A A ∧ B → B A → (B → (A ∧ B)) (A → ¬A) → ¬A ¬A → (A → B) Modus ponens is the only available inference rule
formally, A ⊢ B ===> ⊢ A → B. func implyIntro<A, B>(_ b: B) -> ((A) -> B) { { _ in b } } /// `A, A → B ===> B` (Modus ponens) func implyElim<A, B>(_ f: (A) -> B, _ a: A) -> B { f(a) } A → B A B B A → B ⋮ [A]
a: A, _ b: B) -> (A, B) { (a, b) } /// `A ∧ B ===> A` func andElim1<A, B>(_ ab: (A, B)) -> A { ab.0 } /// `A ∧ B ===> B` func andElim2<A, B>(_ ab: (A, B)) -> B { ab.1 } A B A ∧ B A ∧ B A A ∧ B B
A) -> Either<A, B> { .left(a) } /// `B ===> A ∨ B` func orIntro2<A, B>(_ b: B) -> Either<A, B> { .right(b) } /// `A ∨ B, A → C, B → C ===> C` func orElim<A, B, C>( _ e: Either<A, B>, _ ac: (A) -> C, _ bc: (B) -> C ) -> C { switch e { case let .left(a): return ac(a) case let .right(b): return bc(b) } } A A ∨ B B A ∨ B A ∨ B C C C ⋮ [A] ⋮ [B]
→ C)) → ((A → B) → (A → C)) A → A ∨ B B → A ∨ B (A → C) → ((B → C) → ((A ∨ B) → C)) A ∧ B → A A ∧ B → B A → (B → (A ∧ B)) A → B A B Modus ponens is the only available inference rule ¬¬A → A ⊥ → A (A → ¬A) → ¬A ¬A → (A → B)
B) → C)) A → A ∨ B B → A ∨ B A ∧ B → A A ∧ B → B A → (B → (A ∧ B)) ¬¬A → A ⊥ → A (A → ¬A) → ¬A ¬A → (A → B) Hilbert Style A → B A B Modus ponens is the only available inference rule (A → (B → C)) → ((A → B) → (A → C)) A ∨ B := ¬A → B := ¬B → A A ∧ B := ¬(A → ¬B) := ¬(B → ¬A) ¬A := A → ⊥ NOTE: ∨, ∧, ¬ can be rewritten using → and ⊥ only B → (A → B)
B>(_ a: A) -> (B) -> A { { _ in a } } /// `S = (A → (B → C)) → ((A → B) → (A → C))` func s<A, B, C>(_ a: @escaping (C) -> (A) -> B) -> (_ b: @escaping (C) -> A) -> (C) -> B { { b in { c in a(c)(b(c)) } } }
¬¬A → A ¬(A ∧ B) → (¬A ∨ ¬B) (A → B) → (¬A ∨ B) (¬B → ¬A) → (A → B) Law of Excluded Middle Double Negation Elimination (One of) Law of Contraposition (One of) De Morgan’s Law Material Implication Peirce’s Law NOTE: Converse is tautology Tautologies that can’t be implemented in Swift
→ Introduction Function / Closure Modus Ponens Function Application Axiom Global Variable Assumption Free Variable Discharged Assumption Bound Variable
world e.g. → → • Kripke Model l Assigning inheriting truth value for every possible world on the Frame • Tautology in Intuitionistic Logic … For any frame and for any valuation (= for any model), formula is always true "͕ಘΒΕΔͱɺ #ࣗಈతʹಘΒΕΔ
¬A ⊥ → A → , ∧ , ∨ , ¬, ⊥ Formulas using A → A ∨ B A ∧ B → A Law of Contradiction Law of Excluded Middle ⋮ NOTE: Doesn’t mean Intuitionistic Logic owns Law of Excluded Middle ”directly” (See next slide)
¬¬A → A ¬(A ∧ B) → (¬A ∨ ¬B) (A → B) → (¬A ∨ B) (¬B → ¬A) → (A → B) Law of Excluded Middle Double Negation Elimination (One of) Law of Contraposition (One of) De Morgan’s Law Material Implication Peirce’s Law NOTE: Converse is tautology Tautologies that can’t be implemented in Swift
¬¬(¬¬A → A) ¬¬(¬(A ∧ B) → (¬A ∨ ¬B)) ¬¬((A → B) → (¬A ∨ B)) ¬¬((¬B → ¬A) → (A → B)) Tautologies in Intuitionistic Logic Adding double-negation will hold in Intuitionistic Logic!
in IL) func deMorgan4_IL<A, B>(_ notNotNotAB: Not<Not<Not<(A, B)>>>) -> Not<Not<Either<Not<A>, Not<B>>>> { Not<Not<Either<Not<A>, Not<B>>>> { (notEither: Not<Either<Not<A>, Not<B>>>) in let notNotAB = Not<Not<(A, B)>> { notAB in let notB = Not<B> { b in let notA = Not<A> { a in notAB.f((a, b)) } let either: Either<Not<A>, Not<B>> = .left(notA) return notEither.f(either) } let either: Either<Not<A>, Not<B>> = .right(notB) return notEither.f(either) } return notNotNotAB.f(notNotAB) } }
in IL) func peirceLaw_IL<A, B>() -> (Not<Not<((A) -> B) -> A>>) -> Not<Not<A>> { { notNotF in Not<Not<A>> { notA in let notABA = Not<((A) -> B) -> A> { aba in let ab: (A) -> B = { a in absurd(notElim(a, notA)) } let a = aba(ab) return notA.f(a) } return notNotF.f(notABA) } } }
System: Axioms and Inference Rules •Intuitionistic Logic 㱻 Swift Programming (Curry-Howard) •Writing Law of Excluded Middle in Swift (Glivenko) •Learning Logic will help understand Swift’s type (system)