Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Innovation

 Innovation

Douglas H. Erwin, Na1onal
Museum of Natural History
Smithsonian Ins1tu1on
Washington, DC USA

Insite Project

April 02, 2013
Tweet

More Decks by Insite Project

Other Decks in Science

Transcript

  1. Douglas  H.  Erwin   Na1onal  Museum  of  Natural  History  

    Smithsonian  Ins1tu1on   Washington,  DC  USA   Innovation Venice ECLT Meeting  
  2. Questions •  What  factors  drive  innova1on,  whether  in   biological,

     cultural  or  technological  systems?   – Similar  processes  of  varia1on,  inheritance  and   selec1on  and  driF  occur  in  all  systems   – Understanding  processes  in  one  may  shed  light  on   the  others   – Goal  is  to  build  models  of  innova1on  that  span   different  systems  
  3. Smithian  Growth  

  4. Hawaiian Silverswords

  5. Adaptive Radiation of Hawaiian Silverswords All  photos  from  Hawaiian  Silversword

     Alliance  website   Carlquis)a   California   Argyroxiphium   sandwicense   ssp.  macrocephalum   Dubau)a  waialealae   Dubau)a  la)fola   Dubau)a     re)culata  
  6. Smithian  Growth  

  7. None
  8. THE CAMBRIAN EXPLOSION REPRESENTS SCHUMPETERIAN GROWTH AND THE CONSTRUCTION OF

    A DESIGN SPACE
  9. THE CAMBRIAN EXPLOSION REPRESENTS THE CONSTRUCTION OF A DESIGN SPACE

    But  how  is  this  space  constructed?    Genes?  Developmental  Interac1ons?     Ecological  processes?  
  10. Trezona   Avalon   White  Sea  –   Ediacaran  

    Nama   Small  Shelly  Fauna   Ediacaran  Assemblages   Doushantuo     Embryos   Burgess  Shale   Chengjiang   Fauna  
  11. Laflamme  in  prep.    

  12. None
  13. Hurdia victoria Daley  et  al  Science  2009  

  14. Anomalocaris

  15. Aysheaia

  16. None
  17. Erwin  and  Valen1ne,  The  Cambrian  Explosion,  2013  

  18. Erwin  and  Valen1ne,  The  Construc)on  of  Animal  Biodiversity,  2013  

  19. Maximal Early Disparity   Rapid  early  increase  in  disparity  

    –  Proterozoic/Cambrian  acritarchs   –  Paleozoic  gastropods   –  Paleozoic  rostroconchs   –  Ordovician  bryozoans   –  Crinoids   –  Paleozoic  blastozoans   –  Ordovician  trilobites   –  Marine  arthropods   –  Insects   –  Angiosperm  pollen   time diversity   disparity   Diversity   Disparity  
  20. IMPORTANCE OF GENOMIC AND DEVELOPMENTAL COMPLEXITY

  21. Monosiga Amphimedon Trichoplax Nematostella Drosophila genome size (Mb) 41.6 167

    98 450 180 # genes 9,100 ? 11,514 18,000 14,601 # cell types 1 12 4 20 50 # T.F.’s ? 57 35 min. 87 min. 87 # T.F. families 5 6? 9 10 10 microRNA 0 8 0 40 152 Genomic Complexity (Erwin, 2009; Erwin & Valentine 2013)"
  22. None
  23. Erwin  and  Valen1ne,  The  Cambrian  Explosion,  2013  

  24. Hypothetical Urbilaterian AFer  Carroll  et  al  2001  

  25. Erwin  and  Valen1ne,  The  Cambrian  Explosion,  2013  

  26. Molecular Clock Analysis •  Concatenated  sequences:  7  different  housekeeping  

    genes  (2055  aa)  (Peterson  et  al.  2004)   •  118  taxa  represen1ng  all  major  metazoan  clades     •  24  calibra1on  points:  vertebrate  +  invertebrate   •  Relaxed  molecular  clock  analyses:  CIR  clock  model  in   Phylobayes   •  All  es1mates  tested  under  various  sensi1vity  analyses;  all   appear  robust  
  27. Cryogenian" Ediacaran" Cambrian"

  28. last common" ancestor (LCA) of all living animals" ~ 800

    Ma" (732-840 Ma)"
  29. LCA of cnidarians & bilaterians" ~ 700 Ma" (662-760 Ma)"

  30. LCA of bilaterians" ~ 668 Ma" (641-773)"

  31. last common" ancestor of all " living members" of the

    phylum"
  32. None
  33. Sea Urchin dGRN Biotapestry.org  

  34. None
  35. Strongylocentrotus  

  36. Sea Urchin dGRN Biotapestry.org  

  37. Gene Regulatory Network Structure Erwin  and  Valen1ne,  Forthcoming,  2012;  aFer

     Davidson  
  38. Nature of Kernels •  Recursively  wired  regulatory  genes   • 

    Specify  the  spa1al  domain  of  a  part  of  the   developing  embryo,  oFen  a  regional  pafern   •  The  kernels  are  dedicated  to  development  and   are  not  re-­‐used  elsewhere   •  Interference  with  the  func1on  of  any  gene  will   destroy  kernel  func1on   •  This  forces  subsequent  evolu1onary  change   either  upstream  or  downstream  of  the  kernel    
  39. Implications •  There  is  a  structure  to  the  network  of

      developmental  regulatory  interac1ons   •  Changes  in  some  parts  of  regulatory  networks  are   easier  than  in  others   •  Some  types  of  changes,  par1cularly  the   establishment  of  kernels,  appears  to  have  been   easier  early  in  metazoan  evolu1on;  these  kernels   are  now  highly  refractory  to  modifica1on  
  40. BUT GENES ALONE ARE NOT SUFFICIENT: THE ROLE OF ECOLOGY

  41. Nemerteans  ~  546  Ma   Vertebrates  ~  515  Ma  

    Chaetognaths  ~  540  Ma  
  42. Fedonkin  et  al  The  Rise  of  Animals,  2007  

  43. Genetic inheritance" Et! Et+1! Natural selection   Gene pool" Gene

    pool" Ecological inheritance" Natural selection   Genetic inheritance" Gene pool" Gene pool" Natural selection   Natural selection   Ecological" Spillover   Ecological" Spillover" Species 1" Species 2" Niche Construction From  John  Olding-­‐Smee  
  44. Types of Ecosystem Engineering •  Physical  Engineering:     – Construc1on

     of  physical  structures  (reefs,  )   •  Chemical  Engineering:   – Modifica1on  of  the  geochemical  environment  –   redox.    
  45. Cambrian Ecosystem Engineering •  Archaeocyathid  reefs  (+)   •  Sponges

     &  other  filter   feeders  (+)   •  Burrowed  sediments  (+/-­‐)   •  Shelly  substrates  (+)   •  Mesoozooplankton  (+)  
  46. IMPORTANCE OF MACROEVOLUTIONARY LAGS

  47. Origin  of  Eumetazoa   Origin  of  Developmental   Toolkit  

    Increase  in  miRNA   families;  complexity   of  dGRN  interac1ons     Most  signalling     pathways   present  
  48. •  Inven)on  is  the  crea1on  of   something  new  and

     dis1nct   (contrast  with  varia1on  on   established  themes)     •  Innova)on  occurs  when  inven1ons   become  economically  or   ecologically  significant   Invention & Innovation Joseph Schumpeter (1883-1950
  49. How are new evolutionary spaces created? •  Poten)ated  by  broader

     environmental  senng   (physical,  gene1c,  ecologic)   •  Actualized  by  gene1c  and  developmental   innova1ons  leading  to  a  new  clade  
  50. Simpson’t Adaptive Zones

  51. How are new evolutionary spaces created? •  Poten)ated  by  broader

     environmental  senng   (physical,  gene1c,  ecologic)   •  Actualized  by  gene1c  and  developmental   innova1ons  leading  to  a  new  clade   •  Refined  by  further  developmental  and   ecological  changes   •  Realized  as  innova1ons  by  ecological   expansion  and  evolu1onary  success    
  52. “THE TRUTH OF AN IDEA IS NOT A STAGNANT PROPERTY

    INHERENT IN IT. TRUTH HAPPENS TO AN IDEA. IT BECOMES TRUE, IS MADE TRUE BY EVENTS William  James,  Pragma)sm  
  53. None
  54. None
  55. Erwin  and  Valen1ne,  The  Cambrian  Explosion,  2013