$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Massive parallel processing of public high-thro...
Search
Tazro Inutano Ohta
July 22, 2014
Science
0
290
Massive parallel processing of public high-throughput sequencing data and experiment of sharing data analysis environment
NIG/DDBJ supercomputer user meeting at National Institute of Genetics
Tazro Inutano Ohta
July 22, 2014
Tweet
Share
More Decks by Tazro Inutano Ohta
See All by Tazro Inutano Ohta
Yevis: System to support building a workflow registry with automated quality control
inutano
0
100
Standardization of biological sample information database
inutano
0
52
Describe data analysis workflow with workflow languages
inutano
5
4.5k
Container virtualization technologies and workflow languages improve portability and reproducibility of data analysis environment
inutano
3
320
次世代シーケンサーによるメタゲノム解析:桜の花びらに付着した環境DNAを解析する
inutano
0
76
Workflows that run everywhere and where to run them
inutano
0
130
The Sequence Read Archive search system to make use of public high-throughput sequencing data
inutano
0
250
Improve portability of bioinformatics software across HPC and cloud infrastructures
inutano
1
94
Container, Cloud, and HPC
inutano
0
150
Other Decks in Science
See All in Science
WeMeet Group - 採用資料
wemeet
0
3.4k
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
160
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
350
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
220
ICRA2024 速報
rpc
3
5.3k
Celebrate UTIG: Staff and Student Awards 2024
utig
0
480
【人工衛星】座標変換についての説明
02hattori11sat03
0
120
プロダクト開発を通して学んだナレッジマネジメントの哲学
sonod
0
150
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
2
600
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
29k
(2024) Livres, Femmes et Math
mansuy
0
110
Презентация программы магистратуры СПбГУ "Искусственный интеллект и наука о данных"
dscs
0
400
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.3k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Teambox: Starting and Learning
jrom
133
8.8k
Making Projects Easy
brettharned
115
5.9k
Building an army of robots
kneath
302
43k
KATA
mclloyd
29
14k
Building Applications with DynamoDB
mza
90
6.1k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
17k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
Transcript
େྔ/(4σʔλͷฒྻॲཧͱڞ༻εύίϯʹ͓͚Δڥߏஙͷࠓޙʹ͍ͭͯ ใɾγεςϜݚڀػߏ ϥΠϑαΠΤϯε౷߹σʔλϕʔεηϯλʔ େా ୡ <
[email protected]
> ! prepared for ҨݚDDBJεύίϯϢʔβձ
July 22, 2014
Summary ‣ ҨݚεύίϯΛར༻͠ެ։/(4σʔλશͯʹରͯ͠ όονॲཧΛߦ͍ɼ%#ͷߏஙΛߦ͍ͬͯ·͢ ! ‣ σʔλղੳύΠϓϥΠϯͷڞ༗ɾ࠶࣮ߦΛߦ͏ͨΊͷ 7.ίϯςφΛར༻ͨ͠ڥߏஙͷௐࠪɾ։ൃΛߦ͍ͬͯ·͢
sra.dbcls.jp
‣ ެ։/(4σʔλʹରͯ͠'BTU2$Λ࣮ߦ݁͠ՌΛճऩɾूܭ ‣ %-Մೳͳσʔλશ͕ͯର ‣ ʙొ·Ͱྃ ‣ ૯σʔλ ‣
4FRVFODF3VO TJOHMFPSQBJSFE ‣ ૯σʔλαΠζ ‣ 5 Ԙجର ެ։NGSσʔλͷϦʔυΫΦϦςΟDB
‣ σʔλసૹ ‣ MGUQNHFUʹΑΔ(#ͷσʔλసૹ Y ‣ ಉ࣌ฒྻ࣮ߦ ‣ $16$16
Y طଘܭࢉػڥͱͷࠩ
‣ ιϑτΣΞͷόʔδϣϯཧͷ ‣ ڞ༻ڥͰΠϯετʔϧ͕͍͠߹͋Δ ‣ ݱঢ়౦େּݪ͞Μͷ-1.ΛΘͤͯ͘ͳͲͰճආ ‣ IUUQXXXLBTBIBSBXTMQN ‣ େྔͷσʔλʹରͯ͠ͻͱͭͻͱͭख࡞ۀʁ
՝: จʹॻ͔ΕͨύΠϓϥΠϯΛ࠶ݱ͢Δ͜ͱ͕ࠔ
‣ 7JSUVBM.BDIJOF 7. ίϯςφͰڥ͝ͱղੳύΠϓϥΠϯΛڞ༗ ‣ ΠϝʔδΛల։͙ͯ͢͠ʹղੳΛ࢝ΊΔ͜ͱ͕Ͱ͖Δ ‣ ڥߏஙͱΠϝʔδڞ༗ͷٕज़ௐࠪ։ൃΛߦ͍ͬͯ·͢ ‣ "NB[PO8FC4FSWJDFʹ͓͚Δ".*ͷڞ༗
‣ %PDLFS)VCʹ͓͚ΔίϯςφΠϝʔδͷڞ༗ ‣ ҨݚεύίϯͰ͜ΕΒͱޓੑΛ͍࣋ͨͤͨ σʔλղੳͷ࠶ݱੑΛ୲อ͢ΔͨΊͷղܾࡦ
ίʔυιϑτΣΞͱಉ͡Α͏ʹղੳڥΛެ։/ڞ༗
ίʔυιϑτΣΞͱಉ͡Α͏ʹղੳڥΛެ։/ڞ༗ $ docker run -d -p 8080:80 -t inutano/galaxy
‣ Πϝʔδڞ༗Ͱڥͷґଘ͕ͳ͘ͳΔͱબࢶ͕૿͑Δ ‣ ࣗͰߪೖͨ͠ܭࢉػ ‣ ҨݚεύίϯͳͲͷڞ༻ܭࢉػϦιʔε ‣ "NB[PO8FC4FSWJDF "84 ͳͲͷ*OGSBTUSVDUVSFBTB4FSWJDF
*BB4 ‣ ܾΊखಋೖͷίετͱϚγϯߏɼίετ ‣ "84ͷίετ͕͔ͳΓԼ͕ͬͨͨΊબࢶͱͯ͠ݱ࣮తʹ ‣ ϧʔνϯͳܭࢉҨݚεύίϯͰ ͨͩͳͷͰ ܭࢉػϓϥοτϑΥʔϜͷબ
ॳظಋೖίετ ҡ࣋ίετ ߏͷॊೈੑ ৴པੑ/Ӭଓੑ ൿಗੑ ಛ ݸผಋೖ ✕ ✕ ̋
˚ ̋ ࢿۚ͋Ε੍ͳ͠ ڞ༻ܭࢉػࢿݯ (NIGεύίϯ) ̋ ̋ ˚ ˚ ✕ DDBJͷDBͱ݁ IaaS (Ϋϥυ) ̋ ˚ ̋ ˚ ˚ ඞཁͳ࣌ʹඞཁͳ͚ͩ ίετʑԼ͕Δ ϢʔβࢹͰͷ֤ܭࢉػڥͷϝϦοτൺֱ
Summary ‣ ҨݚεύίϯΛར༻͠ެ։/(4σʔλશͯʹରͯ͠ όονॲཧΛߦ͏͜ͱͰ%#ͷߏஙΛߦ͍ͬͯ·͢ ! ‣ σʔλॲཧղੳύΠϓϥΠϯͷอଘӬଓԽ࠶࣮ߦΛߦ͏ͨΊͷ 7.ίϯςφΛར༻ͨ͠ڥߏஙͱެ։%#ͷௐࠪɾ։ൃΛߦ͍ͬͯ·͢