Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Massive parallel processing of public high-thro...
Search
Tazro Inutano Ohta
July 22, 2014
Science
0
320
Massive parallel processing of public high-throughput sequencing data and experiment of sharing data analysis environment
NIG/DDBJ supercomputer user meeting at National Institute of Genetics
Tazro Inutano Ohta
July 22, 2014
Tweet
Share
More Decks by Tazro Inutano Ohta
See All by Tazro Inutano Ohta
Yevis: System to support building a workflow registry with automated quality control
inutano
0
120
Standardization of biological sample information database
inutano
0
75
Describe data analysis workflow with workflow languages
inutano
5
5.5k
Container virtualization technologies and workflow languages improve portability and reproducibility of data analysis environment
inutano
3
340
次世代シーケンサーによるメタゲノム解析:桜の花びらに付着した環境DNAを解析する
inutano
0
100
Workflows that run everywhere and where to run them
inutano
0
160
The Sequence Read Archive search system to make use of public high-throughput sequencing data
inutano
0
290
Improve portability of bioinformatics software across HPC and cloud infrastructures
inutano
1
110
Container, Cloud, and HPC
inutano
0
170
Other Decks in Science
See All in Science
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
8.5k
KH Coderチュートリアル(スライド版)
koichih
1
49k
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
110
機械学習 - DBSCAN
trycycle
PRO
0
1.1k
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
110
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
190
データマイニング - ウェブとグラフ
trycycle
PRO
0
180
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
0
110
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
200
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
820
Ignite の1年間の軌跡
ktombow
0
160
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
49
14k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Build your cross-platform service in a week with App Engine
jlugia
232
18k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Side Projects
sachag
455
43k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
Rails Girls Zürich Keynote
gr2m
95
14k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Transcript
େྔ/(4σʔλͷฒྻॲཧͱڞ༻εύίϯʹ͓͚Δڥߏஙͷࠓޙʹ͍ͭͯ ใɾγεςϜݚڀػߏ ϥΠϑαΠΤϯε౷߹σʔλϕʔεηϯλʔ େా ୡ <
[email protected]
> ! prepared for ҨݚDDBJεύίϯϢʔβձ
July 22, 2014
Summary ‣ ҨݚεύίϯΛར༻͠ެ։/(4σʔλશͯʹରͯ͠ όονॲཧΛߦ͍ɼ%#ͷߏஙΛߦ͍ͬͯ·͢ ! ‣ σʔλղੳύΠϓϥΠϯͷڞ༗ɾ࠶࣮ߦΛߦ͏ͨΊͷ 7.ίϯςφΛར༻ͨ͠ڥߏஙͷௐࠪɾ։ൃΛߦ͍ͬͯ·͢
sra.dbcls.jp
‣ ެ։/(4σʔλʹରͯ͠'BTU2$Λ࣮ߦ݁͠ՌΛճऩɾूܭ ‣ %-Մೳͳσʔλશ͕ͯର ‣ ʙొ·Ͱྃ ‣ ૯σʔλ ‣
4FRVFODF3VO TJOHMFPSQBJSFE ‣ ૯σʔλαΠζ ‣ 5 Ԙجର ެ։NGSσʔλͷϦʔυΫΦϦςΟDB
‣ σʔλసૹ ‣ MGUQNHFUʹΑΔ(#ͷσʔλసૹ Y ‣ ಉ࣌ฒྻ࣮ߦ ‣ $16$16
Y طଘܭࢉػڥͱͷࠩ
‣ ιϑτΣΞͷόʔδϣϯཧͷ ‣ ڞ༻ڥͰΠϯετʔϧ͕͍͠߹͋Δ ‣ ݱঢ়౦େּݪ͞Μͷ-1.ΛΘͤͯ͘ͳͲͰճආ ‣ IUUQXXXLBTBIBSBXTMQN ‣ େྔͷσʔλʹରͯ͠ͻͱͭͻͱͭख࡞ۀʁ
՝: จʹॻ͔ΕͨύΠϓϥΠϯΛ࠶ݱ͢Δ͜ͱ͕ࠔ
‣ 7JSUVBM.BDIJOF 7. ίϯςφͰڥ͝ͱղੳύΠϓϥΠϯΛڞ༗ ‣ ΠϝʔδΛల։͙ͯ͢͠ʹղੳΛ࢝ΊΔ͜ͱ͕Ͱ͖Δ ‣ ڥߏஙͱΠϝʔδڞ༗ͷٕज़ௐࠪ։ൃΛߦ͍ͬͯ·͢ ‣ "NB[PO8FC4FSWJDFʹ͓͚Δ".*ͷڞ༗
‣ %PDLFS)VCʹ͓͚ΔίϯςφΠϝʔδͷڞ༗ ‣ ҨݚεύίϯͰ͜ΕΒͱޓੑΛ͍࣋ͨͤͨ σʔλղੳͷ࠶ݱੑΛ୲อ͢ΔͨΊͷղܾࡦ
ίʔυιϑτΣΞͱಉ͡Α͏ʹղੳڥΛެ։/ڞ༗
ίʔυιϑτΣΞͱಉ͡Α͏ʹղੳڥΛެ։/ڞ༗ $ docker run -d -p 8080:80 -t inutano/galaxy
‣ Πϝʔδڞ༗Ͱڥͷґଘ͕ͳ͘ͳΔͱબࢶ͕૿͑Δ ‣ ࣗͰߪೖͨ͠ܭࢉػ ‣ ҨݚεύίϯͳͲͷڞ༻ܭࢉػϦιʔε ‣ "NB[PO8FC4FSWJDF "84 ͳͲͷ*OGSBTUSVDUVSFBTB4FSWJDF
*BB4 ‣ ܾΊखಋೖͷίετͱϚγϯߏɼίετ ‣ "84ͷίετ͕͔ͳΓԼ͕ͬͨͨΊબࢶͱͯ͠ݱ࣮తʹ ‣ ϧʔνϯͳܭࢉҨݚεύίϯͰ ͨͩͳͷͰ ܭࢉػϓϥοτϑΥʔϜͷબ
ॳظಋೖίετ ҡ࣋ίετ ߏͷॊೈੑ ৴པੑ/Ӭଓੑ ൿಗੑ ಛ ݸผಋೖ ✕ ✕ ̋
˚ ̋ ࢿۚ͋Ε੍ͳ͠ ڞ༻ܭࢉػࢿݯ (NIGεύίϯ) ̋ ̋ ˚ ˚ ✕ DDBJͷDBͱ݁ IaaS (Ϋϥυ) ̋ ˚ ̋ ˚ ˚ ඞཁͳ࣌ʹඞཁͳ͚ͩ ίετʑԼ͕Δ ϢʔβࢹͰͷ֤ܭࢉػڥͷϝϦοτൺֱ
Summary ‣ ҨݚεύίϯΛར༻͠ެ։/(4σʔλશͯʹରͯ͠ όονॲཧΛߦ͏͜ͱͰ%#ͷߏஙΛߦ͍ͬͯ·͢ ! ‣ σʔλॲཧղੳύΠϓϥΠϯͷอଘӬଓԽ࠶࣮ߦΛߦ͏ͨΊͷ 7.ίϯςφΛར༻ͨ͠ڥߏஙͱެ։%#ͷௐࠪɾ։ൃΛߦ͍ͬͯ·͢