Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Massive parallel processing of public high-thro...
Search
Tazro Inutano Ohta
July 22, 2014
Science
0
320
Massive parallel processing of public high-throughput sequencing data and experiment of sharing data analysis environment
NIG/DDBJ supercomputer user meeting at National Institute of Genetics
Tazro Inutano Ohta
July 22, 2014
Tweet
Share
More Decks by Tazro Inutano Ohta
See All by Tazro Inutano Ohta
Yevis: System to support building a workflow registry with automated quality control
inutano
0
130
Standardization of biological sample information database
inutano
0
77
Describe data analysis workflow with workflow languages
inutano
5
5.6k
Container virtualization technologies and workflow languages improve portability and reproducibility of data analysis environment
inutano
3
350
次世代シーケンサーによるメタゲノム解析:桜の花びらに付着した環境DNAを解析する
inutano
0
110
Workflows that run everywhere and where to run them
inutano
0
160
The Sequence Read Archive search system to make use of public high-throughput sequencing data
inutano
0
300
Improve portability of bioinformatics software across HPC and cloud infrastructures
inutano
1
120
Container, Cloud, and HPC
inutano
0
180
Other Decks in Science
See All in Science
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
170
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
130
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
450
Algorithmic Aspects of Quiver Representations
tasusu
0
110
凸最適化からDC最適化まで
santana_hammer
1
330
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
データマイニング - グラフデータと経路
trycycle
PRO
1
250
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.4k
知能とはなにかーヒトとAIのあいだー
tagtag
0
120
My Little Monster
juzishuu
0
290
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
機械学習 - SVM
trycycle
PRO
1
940
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
The Cult of Friendly URLs
andyhume
79
6.7k
RailsConf 2023
tenderlove
30
1.3k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.8k
Six Lessons from altMBA
skipperchong
29
4.1k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Agile that works and the tools we love
rasmusluckow
331
21k
Transcript
େྔ/(4σʔλͷฒྻॲཧͱڞ༻εύίϯʹ͓͚Δڥߏஙͷࠓޙʹ͍ͭͯ ใɾγεςϜݚڀػߏ ϥΠϑαΠΤϯε౷߹σʔλϕʔεηϯλʔ େా ୡ <
[email protected]
> ! prepared for ҨݚDDBJεύίϯϢʔβձ
July 22, 2014
Summary ‣ ҨݚεύίϯΛར༻͠ެ։/(4σʔλશͯʹରͯ͠ όονॲཧΛߦ͍ɼ%#ͷߏஙΛߦ͍ͬͯ·͢ ! ‣ σʔλղੳύΠϓϥΠϯͷڞ༗ɾ࠶࣮ߦΛߦ͏ͨΊͷ 7.ίϯςφΛར༻ͨ͠ڥߏஙͷௐࠪɾ։ൃΛߦ͍ͬͯ·͢
sra.dbcls.jp
‣ ެ։/(4σʔλʹରͯ͠'BTU2$Λ࣮ߦ݁͠ՌΛճऩɾूܭ ‣ %-Մೳͳσʔλશ͕ͯର ‣ ʙొ·Ͱྃ ‣ ૯σʔλ ‣
4FRVFODF3VO TJOHMFPSQBJSFE ‣ ૯σʔλαΠζ ‣ 5 Ԙجର ެ։NGSσʔλͷϦʔυΫΦϦςΟDB
‣ σʔλసૹ ‣ MGUQNHFUʹΑΔ(#ͷσʔλసૹ Y ‣ ಉ࣌ฒྻ࣮ߦ ‣ $16$16
Y طଘܭࢉػڥͱͷࠩ
‣ ιϑτΣΞͷόʔδϣϯཧͷ ‣ ڞ༻ڥͰΠϯετʔϧ͕͍͠߹͋Δ ‣ ݱঢ়౦େּݪ͞Μͷ-1.ΛΘͤͯ͘ͳͲͰճආ ‣ IUUQXXXLBTBIBSBXTMQN ‣ େྔͷσʔλʹରͯ͠ͻͱͭͻͱͭख࡞ۀʁ
՝: จʹॻ͔ΕͨύΠϓϥΠϯΛ࠶ݱ͢Δ͜ͱ͕ࠔ
‣ 7JSUVBM.BDIJOF 7. ίϯςφͰڥ͝ͱղੳύΠϓϥΠϯΛڞ༗ ‣ ΠϝʔδΛల։͙ͯ͢͠ʹղੳΛ࢝ΊΔ͜ͱ͕Ͱ͖Δ ‣ ڥߏஙͱΠϝʔδڞ༗ͷٕज़ௐࠪ։ൃΛߦ͍ͬͯ·͢ ‣ "NB[PO8FC4FSWJDFʹ͓͚Δ".*ͷڞ༗
‣ %PDLFS)VCʹ͓͚ΔίϯςφΠϝʔδͷڞ༗ ‣ ҨݚεύίϯͰ͜ΕΒͱޓੑΛ͍࣋ͨͤͨ σʔλղੳͷ࠶ݱੑΛ୲อ͢ΔͨΊͷղܾࡦ
ίʔυιϑτΣΞͱಉ͡Α͏ʹղੳڥΛެ։/ڞ༗
ίʔυιϑτΣΞͱಉ͡Α͏ʹղੳڥΛެ։/ڞ༗ $ docker run -d -p 8080:80 -t inutano/galaxy
‣ Πϝʔδڞ༗Ͱڥͷґଘ͕ͳ͘ͳΔͱબࢶ͕૿͑Δ ‣ ࣗͰߪೖͨ͠ܭࢉػ ‣ ҨݚεύίϯͳͲͷڞ༻ܭࢉػϦιʔε ‣ "NB[PO8FC4FSWJDF "84 ͳͲͷ*OGSBTUSVDUVSFBTB4FSWJDF
*BB4 ‣ ܾΊखಋೖͷίετͱϚγϯߏɼίετ ‣ "84ͷίετ͕͔ͳΓԼ͕ͬͨͨΊબࢶͱͯ͠ݱ࣮తʹ ‣ ϧʔνϯͳܭࢉҨݚεύίϯͰ ͨͩͳͷͰ ܭࢉػϓϥοτϑΥʔϜͷબ
ॳظಋೖίετ ҡ࣋ίετ ߏͷॊೈੑ ৴པੑ/Ӭଓੑ ൿಗੑ ಛ ݸผಋೖ ✕ ✕ ̋
˚ ̋ ࢿۚ͋Ε੍ͳ͠ ڞ༻ܭࢉػࢿݯ (NIGεύίϯ) ̋ ̋ ˚ ˚ ✕ DDBJͷDBͱ݁ IaaS (Ϋϥυ) ̋ ˚ ̋ ˚ ˚ ඞཁͳ࣌ʹඞཁͳ͚ͩ ίετʑԼ͕Δ ϢʔβࢹͰͷ֤ܭࢉػڥͷϝϦοτൺֱ
Summary ‣ ҨݚεύίϯΛར༻͠ެ։/(4σʔλશͯʹରͯ͠ όονॲཧΛߦ͏͜ͱͰ%#ͷߏஙΛߦ͍ͬͯ·͢ ! ‣ σʔλॲཧղੳύΠϓϥΠϯͷอଘӬଓԽ࠶࣮ߦΛߦ͏ͨΊͷ 7.ίϯςφΛར༻ͨ͠ڥߏஙͱެ։%#ͷௐࠪɾ։ൃΛߦ͍ͬͯ·͢