Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Massive parallel processing of public high-thro...
Search
Tazro Inutano Ohta
July 22, 2014
Science
0
310
Massive parallel processing of public high-throughput sequencing data and experiment of sharing data analysis environment
NIG/DDBJ supercomputer user meeting at National Institute of Genetics
Tazro Inutano Ohta
July 22, 2014
Tweet
Share
More Decks by Tazro Inutano Ohta
See All by Tazro Inutano Ohta
Yevis: System to support building a workflow registry with automated quality control
inutano
0
120
Standardization of biological sample information database
inutano
0
73
Describe data analysis workflow with workflow languages
inutano
5
5.5k
Container virtualization technologies and workflow languages improve portability and reproducibility of data analysis environment
inutano
3
340
次世代シーケンサーによるメタゲノム解析:桜の花びらに付着した環境DNAを解析する
inutano
0
100
Workflows that run everywhere and where to run them
inutano
0
160
The Sequence Read Archive search system to make use of public high-throughput sequencing data
inutano
0
290
Improve portability of bioinformatics software across HPC and cloud infrastructures
inutano
1
110
Container, Cloud, and HPC
inutano
0
170
Other Decks in Science
See All in Science
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
350
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
800
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
610
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
170
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
4
2k
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.3k
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
970
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
310
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
390
傾向スコアによる効果検証 / Propensity Score Analysis and Causal Effect Estimation
ikuma_w
0
130
オンプレミス環境にKubernetesを構築する
koukimiura
0
350
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
990
Featured
See All Featured
Side Projects
sachag
455
43k
Six Lessons from altMBA
skipperchong
28
4k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Building Adaptive Systems
keathley
43
2.7k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Transcript
େྔ/(4σʔλͷฒྻॲཧͱڞ༻εύίϯʹ͓͚Δڥߏஙͷࠓޙʹ͍ͭͯ ใɾγεςϜݚڀػߏ ϥΠϑαΠΤϯε౷߹σʔλϕʔεηϯλʔ େా ୡ <
[email protected]
> ! prepared for ҨݚDDBJεύίϯϢʔβձ
July 22, 2014
Summary ‣ ҨݚεύίϯΛར༻͠ެ։/(4σʔλશͯʹରͯ͠ όονॲཧΛߦ͍ɼ%#ͷߏஙΛߦ͍ͬͯ·͢ ! ‣ σʔλղੳύΠϓϥΠϯͷڞ༗ɾ࠶࣮ߦΛߦ͏ͨΊͷ 7.ίϯςφΛར༻ͨ͠ڥߏஙͷௐࠪɾ։ൃΛߦ͍ͬͯ·͢
sra.dbcls.jp
‣ ެ։/(4σʔλʹରͯ͠'BTU2$Λ࣮ߦ݁͠ՌΛճऩɾूܭ ‣ %-Մೳͳσʔλશ͕ͯର ‣ ʙొ·Ͱྃ ‣ ૯σʔλ ‣
4FRVFODF3VO TJOHMFPSQBJSFE ‣ ૯σʔλαΠζ ‣ 5 Ԙجର ެ։NGSσʔλͷϦʔυΫΦϦςΟDB
‣ σʔλసૹ ‣ MGUQNHFUʹΑΔ(#ͷσʔλసૹ Y ‣ ಉ࣌ฒྻ࣮ߦ ‣ $16$16
Y طଘܭࢉػڥͱͷࠩ
‣ ιϑτΣΞͷόʔδϣϯཧͷ ‣ ڞ༻ڥͰΠϯετʔϧ͕͍͠߹͋Δ ‣ ݱঢ়౦େּݪ͞Μͷ-1.ΛΘͤͯ͘ͳͲͰճආ ‣ IUUQXXXLBTBIBSBXTMQN ‣ େྔͷσʔλʹରͯ͠ͻͱͭͻͱͭख࡞ۀʁ
՝: จʹॻ͔ΕͨύΠϓϥΠϯΛ࠶ݱ͢Δ͜ͱ͕ࠔ
‣ 7JSUVBM.BDIJOF 7. ίϯςφͰڥ͝ͱղੳύΠϓϥΠϯΛڞ༗ ‣ ΠϝʔδΛల։͙ͯ͢͠ʹղੳΛ࢝ΊΔ͜ͱ͕Ͱ͖Δ ‣ ڥߏஙͱΠϝʔδڞ༗ͷٕज़ௐࠪ։ൃΛߦ͍ͬͯ·͢ ‣ "NB[PO8FC4FSWJDFʹ͓͚Δ".*ͷڞ༗
‣ %PDLFS)VCʹ͓͚ΔίϯςφΠϝʔδͷڞ༗ ‣ ҨݚεύίϯͰ͜ΕΒͱޓੑΛ͍࣋ͨͤͨ σʔλղੳͷ࠶ݱੑΛ୲อ͢ΔͨΊͷղܾࡦ
ίʔυιϑτΣΞͱಉ͡Α͏ʹղੳڥΛެ։/ڞ༗
ίʔυιϑτΣΞͱಉ͡Α͏ʹղੳڥΛެ։/ڞ༗ $ docker run -d -p 8080:80 -t inutano/galaxy
‣ Πϝʔδڞ༗Ͱڥͷґଘ͕ͳ͘ͳΔͱબࢶ͕૿͑Δ ‣ ࣗͰߪೖͨ͠ܭࢉػ ‣ ҨݚεύίϯͳͲͷڞ༻ܭࢉػϦιʔε ‣ "NB[PO8FC4FSWJDF "84 ͳͲͷ*OGSBTUSVDUVSFBTB4FSWJDF
*BB4 ‣ ܾΊखಋೖͷίετͱϚγϯߏɼίετ ‣ "84ͷίετ͕͔ͳΓԼ͕ͬͨͨΊબࢶͱͯ͠ݱ࣮తʹ ‣ ϧʔνϯͳܭࢉҨݚεύίϯͰ ͨͩͳͷͰ ܭࢉػϓϥοτϑΥʔϜͷબ
ॳظಋೖίετ ҡ࣋ίετ ߏͷॊೈੑ ৴པੑ/Ӭଓੑ ൿಗੑ ಛ ݸผಋೖ ✕ ✕ ̋
˚ ̋ ࢿۚ͋Ε੍ͳ͠ ڞ༻ܭࢉػࢿݯ (NIGεύίϯ) ̋ ̋ ˚ ˚ ✕ DDBJͷDBͱ݁ IaaS (Ϋϥυ) ̋ ˚ ̋ ˚ ˚ ඞཁͳ࣌ʹඞཁͳ͚ͩ ίετʑԼ͕Δ ϢʔβࢹͰͷ֤ܭࢉػڥͷϝϦοτൺֱ
Summary ‣ ҨݚεύίϯΛར༻͠ެ։/(4σʔλશͯʹରͯ͠ όονॲཧΛߦ͏͜ͱͰ%#ͷߏஙΛߦ͍ͬͯ·͢ ! ‣ σʔλॲཧղੳύΠϓϥΠϯͷอଘӬଓԽ࠶࣮ߦΛߦ͏ͨΊͷ 7.ίϯςφΛར༻ͨ͠ڥߏஙͱެ։%#ͷௐࠪɾ։ൃΛߦ͍ͬͯ·͢