Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Massive parallel processing of public high-thro...
Search
Tazro Inutano Ohta
July 22, 2014
Science
0
310
Massive parallel processing of public high-throughput sequencing data and experiment of sharing data analysis environment
NIG/DDBJ supercomputer user meeting at National Institute of Genetics
Tazro Inutano Ohta
July 22, 2014
Tweet
Share
More Decks by Tazro Inutano Ohta
See All by Tazro Inutano Ohta
Yevis: System to support building a workflow registry with automated quality control
inutano
0
110
Standardization of biological sample information database
inutano
0
70
Describe data analysis workflow with workflow languages
inutano
5
5.3k
Container virtualization technologies and workflow languages improve portability and reproducibility of data analysis environment
inutano
3
340
次世代シーケンサーによるメタゲノム解析:桜の花びらに付着した環境DNAを解析する
inutano
0
95
Workflows that run everywhere and where to run them
inutano
0
150
The Sequence Read Archive search system to make use of public high-throughput sequencing data
inutano
0
290
Improve portability of bioinformatics software across HPC and cloud infrastructures
inutano
1
110
Container, Cloud, and HPC
inutano
0
170
Other Decks in Science
See All in Science
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
4
1.8k
SpatialBiologyWestCoastUS2024
lcolladotor
0
140
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
560
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
510
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
220
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
140
Transport information Geometry: Current and Future II
lwc2017
0
160
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
120
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
170
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1k
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
880
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
140
Featured
See All Featured
Scaling GitHub
holman
460
140k
Building Adaptive Systems
keathley
43
2.7k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Fireside Chat
paigeccino
37
3.5k
Thoughts on Productivity
jonyablonski
69
4.7k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
340
What's in a price? How to price your products and services
michaelherold
246
12k
Optimizing for Happiness
mojombo
379
70k
Docker and Python
trallard
45
3.5k
Music & Morning Musume
bryan
46
6.7k
Transcript
େྔ/(4σʔλͷฒྻॲཧͱڞ༻εύίϯʹ͓͚Δڥߏஙͷࠓޙʹ͍ͭͯ ใɾγεςϜݚڀػߏ ϥΠϑαΠΤϯε౷߹σʔλϕʔεηϯλʔ େా ୡ <
[email protected]
> ! prepared for ҨݚDDBJεύίϯϢʔβձ
July 22, 2014
Summary ‣ ҨݚεύίϯΛར༻͠ެ։/(4σʔλશͯʹରͯ͠ όονॲཧΛߦ͍ɼ%#ͷߏஙΛߦ͍ͬͯ·͢ ! ‣ σʔλղੳύΠϓϥΠϯͷڞ༗ɾ࠶࣮ߦΛߦ͏ͨΊͷ 7.ίϯςφΛར༻ͨ͠ڥߏஙͷௐࠪɾ։ൃΛߦ͍ͬͯ·͢
sra.dbcls.jp
‣ ެ։/(4σʔλʹରͯ͠'BTU2$Λ࣮ߦ݁͠ՌΛճऩɾूܭ ‣ %-Մೳͳσʔλશ͕ͯର ‣ ʙొ·Ͱྃ ‣ ૯σʔλ ‣
4FRVFODF3VO TJOHMFPSQBJSFE ‣ ૯σʔλαΠζ ‣ 5 Ԙجର ެ։NGSσʔλͷϦʔυΫΦϦςΟDB
‣ σʔλసૹ ‣ MGUQNHFUʹΑΔ(#ͷσʔλసૹ Y ‣ ಉ࣌ฒྻ࣮ߦ ‣ $16$16
Y طଘܭࢉػڥͱͷࠩ
‣ ιϑτΣΞͷόʔδϣϯཧͷ ‣ ڞ༻ڥͰΠϯετʔϧ͕͍͠߹͋Δ ‣ ݱঢ়౦େּݪ͞Μͷ-1.ΛΘͤͯ͘ͳͲͰճආ ‣ IUUQXXXLBTBIBSBXTMQN ‣ େྔͷσʔλʹରͯ͠ͻͱͭͻͱͭख࡞ۀʁ
՝: จʹॻ͔ΕͨύΠϓϥΠϯΛ࠶ݱ͢Δ͜ͱ͕ࠔ
‣ 7JSUVBM.BDIJOF 7. ίϯςφͰڥ͝ͱղੳύΠϓϥΠϯΛڞ༗ ‣ ΠϝʔδΛల։͙ͯ͢͠ʹղੳΛ࢝ΊΔ͜ͱ͕Ͱ͖Δ ‣ ڥߏஙͱΠϝʔδڞ༗ͷٕज़ௐࠪ։ൃΛߦ͍ͬͯ·͢ ‣ "NB[PO8FC4FSWJDFʹ͓͚Δ".*ͷڞ༗
‣ %PDLFS)VCʹ͓͚ΔίϯςφΠϝʔδͷڞ༗ ‣ ҨݚεύίϯͰ͜ΕΒͱޓੑΛ͍࣋ͨͤͨ σʔλղੳͷ࠶ݱੑΛ୲อ͢ΔͨΊͷղܾࡦ
ίʔυιϑτΣΞͱಉ͡Α͏ʹղੳڥΛެ։/ڞ༗
ίʔυιϑτΣΞͱಉ͡Α͏ʹղੳڥΛެ։/ڞ༗ $ docker run -d -p 8080:80 -t inutano/galaxy
‣ Πϝʔδڞ༗Ͱڥͷґଘ͕ͳ͘ͳΔͱબࢶ͕૿͑Δ ‣ ࣗͰߪೖͨ͠ܭࢉػ ‣ ҨݚεύίϯͳͲͷڞ༻ܭࢉػϦιʔε ‣ "NB[PO8FC4FSWJDF "84 ͳͲͷ*OGSBTUSVDUVSFBTB4FSWJDF
*BB4 ‣ ܾΊखಋೖͷίετͱϚγϯߏɼίετ ‣ "84ͷίετ͕͔ͳΓԼ͕ͬͨͨΊબࢶͱͯ͠ݱ࣮తʹ ‣ ϧʔνϯͳܭࢉҨݚεύίϯͰ ͨͩͳͷͰ ܭࢉػϓϥοτϑΥʔϜͷબ
ॳظಋೖίετ ҡ࣋ίετ ߏͷॊೈੑ ৴པੑ/Ӭଓੑ ൿಗੑ ಛ ݸผಋೖ ✕ ✕ ̋
˚ ̋ ࢿۚ͋Ε੍ͳ͠ ڞ༻ܭࢉػࢿݯ (NIGεύίϯ) ̋ ̋ ˚ ˚ ✕ DDBJͷDBͱ݁ IaaS (Ϋϥυ) ̋ ˚ ̋ ˚ ˚ ඞཁͳ࣌ʹඞཁͳ͚ͩ ίετʑԼ͕Δ ϢʔβࢹͰͷ֤ܭࢉػڥͷϝϦοτൺֱ
Summary ‣ ҨݚεύίϯΛར༻͠ެ։/(4σʔλશͯʹରͯ͠ όονॲཧΛߦ͏͜ͱͰ%#ͷߏஙΛߦ͍ͬͯ·͢ ! ‣ σʔλॲཧղੳύΠϓϥΠϯͷอଘӬଓԽ࠶࣮ߦΛߦ͏ͨΊͷ 7.ίϯςφΛར༻ͨ͠ڥߏஙͱެ։%#ͷௐࠪɾ։ൃΛߦ͍ͬͯ·͢