フォレストワークショップ, JST CREST「学習/数理モデルに基づく時空間展開型アーキテクチャの創出と応用」機械学習グループ, 2022年2月24日.
寸㹀啾㔐䌓ך⥋걾⼒䱿㹀
#FOJHO0WFSUUJOH
㢳㢌ꆀ加ה3F-6طحزךⰅ⸂瑞ⴓⶴ
+45$3&45㷕统侧椚ٌرٕח㛇בֻ儗瑞㾜㘗،٦ؗذؙثٍךⶼ⳿ה䘔欽 劤募$3&45
堣唒㷕统棳ؿٖؓأزٙ٦ؙءّحف鑧겗䲿⣘
椚⻉㷕灇瑔䨽ꬠ倜濼腉窟さ灇瑔إٝة٦!❨ꢻ㣽"53 J14稢脄鸬䵿棳
⻌嵲麣㣐㷕⻉㷕䘔ⶼ䧭灇瑔䬿挿 *$3F%%
戣䊛♧㷕
[email protected]
2022䎃2剢24傈
猘ךꟼ䗰ꨄ侔圓鸡⠵ֲ堣唒㷕统ر٦ة⚥䗰㘗荈搫猰㷕
ꨄ侔圓鸡 穈さׇ涸圓鸡װ➿侧涸圓鸡
꧊さծ锷椚ծ纇ծ갫٥穈さׇծ禸俑㶵ծخٔ٦ծؚٓؿծ穈さׇ䎗⡦ծ˘
㼎韋חꨄ侔圓鸡 㼎韋חꨄ侔圓鸡
堣唒㷕统ٌرٕחꨄ侔圓鸡 劤傈ך鑧겗
㹋כ䎌稢脄歗⫷ך帾㾴㷕统 椚灇
ה⻉㷕 ⻌㣐
➙傈ך鑧겗䲿⣘
˖ 寸㹀啾㔐䌓ך⥋걾⼒䱿㹀٥#FOJHO0WFSUUJOH
噟 荈搫猰㷕דך堣唒㷕统ⵃ崞欽
דِ٦ؠה׃ג寸㹀加،ٝ؟ٝـٕ
הصُ٦ٕٓطحز
⢪גְג⳿⠓植韋ה㉏겗ך稱➜
˖ 㢳㢌ꆀ加ה3F-6طحزךⰅ⸂瑞ⴓⶴ
خٔ٦ג葺ְ״י˘
寸㹀加ծ禸窟埠ծر٦ة圓鸡ծؿ؋؎ٕءأذيծ9.-ծ
ꨄ侔圓鸡ד㹀纏ׁ堣唒㷕统ٌرٕ
寸㹀啾
寸㹀加،ٝ؟ٝـٕ
صُ٦ٕٓطحزٙ٦ؙ
锷椚䱿锷٥ٕ٦ٕك٦أ٥䩛竲ֹ㘗זוך 傊⚅➿㘗ך
堣唒㷕统ٌرٕ
˖ 輐さ٥涪㾜ָ➂䊨濼腉ⴓꅿך剑㣐ךꟼ䗰✲
˖ ؔ٦زوزٝ٥锷椚㔐騟ה娖〷涸חכずׄ⳿涪挿
娖〷涸ח㺘䱸זꟼ⤘
寸㹀加ה锷椚ꟼ侧
if x2 ≤ θ1 then
if x1 ≤ θ2 then
return Blue
else
if x2 ≤ θ4 then
return Red
else
if x1 ≤ θ5 then
return Red
else
if x1 ≤ θ6 then
return Blue
else
return Red
else
if x1 ≤ θ3 then
if x2 ≤ θ7 then
return Blue
else
return Blue
else
return Red
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGZiRVNvh8rijIXqiIrkThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOslho=
X2
✓1
yes no
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGRY0WT78eKosyFqswokThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOelho=
X1
✓2
yes no
Blue
AAAClnichVHLSsNAFD2N7/qquim4KZaKqzItRcWFiCK6rNZqoZWQxGkbTJOYTCta/AF/wIW4UFARP8APcOMPuOgniMsKblx4mwZExXrDZM6cuefOmbmqbeiuYKwRkLq6e3r7+geCg0PDI6OhsfFt16o6Gs9qlmE5OVVxuaGbPCt0YfCc7XClohp8R91fae3v1Ljj6pa5JY5svltRSqZe1DVFECWHxnJyMlIw+EGkIMpcKHJKDkVZnHkR+Q0SPojCj7QVekABe7CgoYoKOEwIwgYUuPTlkQCDTdwu6sQ5hHRvn+MEQdJWKYtThkLsPv1LtMr7rEnrVk3XU2t0ikHDIWUEMfbM7liTPbF79sI+/qxV92q0vBzRrLa13JZHT8OZ939VFZoFyl+qjp4Fipj3vOrk3faY1i20tr52fNbMLGzG6tPsir2S/0vWYI90A7P2pl1v8M3zDn5U8kIvRg1K/GzHb7CdjCdm46mNVHRp2W9VPyYxhRnqxxyWsI40slT/EBe4wa0UlhalVWmtnSoFfM0EvoWU/gQ6DJYd
X2
✓4
yes no
Red AAAClnichVHLSsNAFD3GV62vVjeCm2JRXJWJ+MKFFEV0WVurBSshiVMNTZOYTCta/AF/wIW4UFARP8APcOMPuOgniEsFNy68SQOiot4wmTNn7rlzZq7mmIYnGGu0SK1t7R2dka5od09vX38sPrDu2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvaOVFf3+jxl3PsK01ceDwrYq6YxklQ1cFUUosXlDkRNHke4mi2OVCVaaUWJKlWBCJn0AOQRJhZOzYHYrYhg0dVVTAYUEQNqHCo28TMhgc4rZQJ84lZAT7HEeIkrZKWZwyVGLL9N+h1WbIWrT2a3qBWqdTTBouKRMYZY/shr2wB3bLntj7r7XqQQ3fywHNWlPLHaX/eCj39q+qQrPA7qfqT88CJcwGXg3y7gSMfwu9qa8dnrzk5rKj9TF2wZ7J/zlrsHu6gVV71S9Xefb0Dz8aeaEXowbJ39vxE6xPpOTp1OTqZDK9ELYqgmGMYJz6MYM0VpBBnurv4wxXuJaGpHlpSVpupkotoWYQX0LKfAA5/pYd
X1
✓5
yes no
Red AAAClnichVHLSsNAFD3Gd321uhHcFIviqkykVHEhRRFd9mG1YCUkcWyDaRKTaUWLP+APuBAXCiriB/gBbvwBF/0EcVnBjQtv04CoqDdM5syZe+6cmas5puEJxhodUmdXd09vX39oYHBoeCQcGd3w7Kqr87xum7Zb0FSPm4bF88IQJi84Llcrmsk3tb3l1v5mjbueYVvr4tDh2xW1ZBm7hq4KopRwpKDI0aLJ96NFUeZCVZJKOMbizI/oTyAHIIYg0nb4HkXswIaOKirgsCAIm1Dh0bcFGQwOcduoE+cSMvx9jmOESFulLE4ZKrF79C/RaitgLVq3anq+WqdTTBouKaOYYk/sljXZI7tjz+z911p1v0bLyyHNWlvLHWXkZDz39q+qQrNA+VP1p2eBXcz7Xg3y7vhM6xZ6W187Om3mFrJT9Wl2yV7I/wVrsAe6gVV71a8yPHv2hx+NvNCLUYPk7+34CTZm43IynsgkYqmloFV9mMAkZqgfc0hhDWnkqf4BznGNG2lcWpRWpNV2qtQRaMbwJaT0Bzwelh4=
X1
✓6
yes no
Red
Blue
X1
✓3
yes no
Red
X1
✓7
yes no
Blue Blue
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSTayFoyRO3IiMAtEDUfAibYQfoQInYIACLdCAgg4csQoS2PiVQQQCJnJV6CJnIWLuPoVzCKC2hVkUMyRkm/iv46rssTqunZq2q1bwFBWHhcoIxMgLuScD8kweyCv5/LNW163heOngLA+11KyFLlZyH/+qNJw5NL5VYz1zOIVd1ytD76bLOLdQhvr22dUgl8zGuuvklryh/xvSJ094A739rtxlaLY3xo+MXvDFsEHi73aMgsJmXNyOJzKJaGrfa5UfVmENNrAfO5CCI0hD3u3DJfTgWggKW0JS2BumCj5Psww/Qjj8Ak3rksg=
✓1
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSLVELR0mcuBEZBaIHouBF2gg/QgVOwAAFWqABBR04YhUksPErgwgETOSq0EXOQsTcfQrnEEBtC7MoZkjINvFfx1XZY3VcOzVtV63gKSoOC5URiJEXck8G5Jk8kFfy+WetrlvD8dLBWR5qqVkLXazkPv5VaThzaHyrxnrmcAq7rleG3k2XcW6hDPXts6tBLpmNddfJLXlD/zekT57wBnr7XbnL0GxvjB8ZveCLYYPE3+0YBYXNuLgdT2QS0dS+1yo/rMIabGA/diAFR5CGvNuHS+jBtRAUtoSksDdMFXyeZhl+hHD4BVRLkss=
✓4
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRAooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4V4NLYTTWQS4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXtoWksD9KFTyuZhV+hHD0BVALksk=
✓2
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRQfIRYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixPS9wgTk1PTM95Z39y8fyEQXFzKW3rLlGlO1hXdLEqiRRWm0RxnXKFFw6SiKim0IDUP7f1Cm5oW07UT3jFoRRXrGqsxWeRIFcu8QblY3a4GwyRKnAiNgpgLwuBGSg8+QhlOQQcZWqACBQ04YgVEsPArQQwIGMhVoIuciYg5+xTOwYfaFmZRzBCRbeK/jquSy2q4tmtajlrGUxQcJipDECEv5J4MyDN5IK/k889aXaeG7aWDszTUUqMauFjJfvyrUnHm0PhWjfXMoQZ7jleG3g2HsW8hD/Xts6tBNpGJdNfJLXlD/zekT57wBlr7Xb5L00xvjB8JveCLYYNiv9sxCvKb0dhONJ6Oh5MHbqu8sAprsIH92IUkHEMKck4fLqEH14Jf2BISwv4wVfC4mmX4EcLRF1Zrksw=
✓5
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRQgoZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYS9SCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaCwRjWfi4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXdoSksD9KFTyuZhV+hHD0BViLks0=
✓6
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmQQooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaGwnmsgkwqkDt1VeWIcN2MJ+7EIKjiENeacPl9CHa8EvxIWksD9KFTyuZhV+hHD0BVIrkso=
✓3
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRQIoZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYS9SCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaGw3Gs/Ew6kDt1VeWIcN2MJ+JCAFx5CGvNOHS+jDteAXdoSksD9KFTyuZhV+hHD0BVqrks4=
✓7
AAACsnichVFNLwNBGH6sr/ouLhKXjYa4aGZpEIlEuDi2KEJls7sdNbHd3exOK9X4A64ODk4kDuIHiCsXf8DBTxBHEhcHb7crguDdzM4zz7zPO8/Ma3q2CCRjDw1KY1NzS2usrb2js6u7J97btxq4Jd/iWcu1XX/dNAJuC4dnpZA2X/d8bhRNm6+Zuwu1/bUy9wPhOiuy4vGtolFwxLawDEmUHh9L60KdmVUzuqbm9ni+wAmOf8KJD5jLuzLQ4wmWZGGoP4EWgQSiSLvxK+SQhwsLJRTB4UAStmEgoG8TGhg84rZQJc4nJMJ9jgO0k7ZEWZwyDGJ36V+g1WbEOrSu1QxCtUWn2DR8UqoYZvfsgj2zO3bJHtnbr7WqYY2alwrNZl3LPb3ncGD59V9VkWaJnU/Vn54ltjEdehXk3QuZ2i2sur68f/y8PLM0XB1hZ+yJ/J+yB3ZLN3DKL9Z5hi+d/OHHJC/0YtQg7Xs7foLV8aQ2mUxlUom5+ahVMQxiCKPUjynMYRFpZKn+Ea5xg1slpWwohmLVU5WGSNOPL6HY7+R7n+w=
Pi := Q1
^ Q2
^ Q3
^ . . .
AAACynichVHLTttAFD24DyB9kJYNUjdWIxCraIIQIKRWUatKLFgQIBAJI8s2lzBkYrv2JFJqZceqP9BFV0ViUfEB/YBuumXBgvIFiCWVuumCG8cSAgS91njOnLnnzpm5bqhkrIU4GTAePHz0eHBoOPfk6bPnI/kXL9fioBV5VPUCFUQ114lJSZ+qWmpFtTAip+kqWncb73v7622KYhn4q7oT0mbTqftyW3qOZsrOf6jYu+b8G9NyqS79xONScTdXsxumpeijaekd0o6tTMtKybdXTM4ifysT2PmCKIo0zNuglIECslgK8j9gYQsBPLTQBMGHZqzgIOZvAyUIhMxtImEuYiTTfUIXOda2OIs4w2G2wf86rzYy1ud1r2acqj0+RfGIWGliXByL7+JC/BKH4kz8u7NWktboeenw7Pa1FNojn8dW/v5X1eRZY+dKda9njW3MpV4lew9TpncLr69vf/pysTK/PJ5MiH1xzv6/iRPxk2/gt/94BxVa/nqPH5e98Itxg0o323EbrE0VSzPF6cp0ofwua9UQXuE1JrkfsyhjAUuocv1DHOE3To1FIzI6RtJPNQYyzSiuhbF3CZqVqlw=
Qj :=
(
Xk
✓l
Xk > ✓l
寸㹀加כ锷椚䒭ה׃ג鼅鎉垥彊䕎 琎ㄤ䕎
Blue
AAACoXichVHLSsNAFD3G97NVN4IugqXiqkyKqAiC6EZ3tbZaaEtJ0rGGpklIpgUtblz6Ay5cKQiKK934AW78ARd+gris4MaFt2lAtFhvmMyZM/fcOTNXc0zDE4y9dEndPb19/QODQ8Mjo2Oh8PjErmdXXZ2nddu03Yymetw0LJ4WhjB5xnG5WtFMvqeVN5r7ezXueoZtpcShw/MVtWQZ+4auCqIK4ZmUvLIqJwqKnKtxTiDeArmiLbxCOMJizA+5HSgBiCCIhB1+QA5F2NBRRQUcFgRhEyo8+rJQwOAQl0edOJeQ4e9zHGOItFXK4pShElumf4lW2YC1aN2s6flqnU4xabiklBFlz+yGNdgTu2Wv7PPPWnW/RtPLIc1aS8udQuh0aufjX1WFZoGDb1VHzwL7WPa9GuTd8ZnmLfSWvnZ01thZSUbrc+ySvZH/C/bCHukGVu1dv9rmyfMOfjTyQi9GDVJ+t6Md7MZjymJsYXshsrYetGoA05jFPPVjCWvYRAJpqn+Ca9zhXopIW1JCSrZSpa5AM4kfIWW/AAtRmVk=
T := P1
_ P2
_ . . .
AAACqXicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQuoxCSlpmfmVScDzSiu5QqxNYyJUQBSBlwxqXkpUOF4AWUDPQMwUMBkGEIZygxQEJAvsJ0hhiGFIZ8hmaGUIZchlSGPoQTIzmFIZCgGwmgGQwYDhgKgWCxDNVCsCMjKBMunMtQycAH1lgJVpQJVJAJFs4FkOpAXDRXNA/JBZhaDdScDbckB4iKgTgUGVYOrBisNPhucMFht8NLgD06zqsFmgNxSCaSTIHpTC+L5uySCvxPUlQukSxgyELrwurmEIY3BAuzWTKDbC8AiIF8kQ/SXVU3/HGwVpFqtZrDI4DXQ/QsNbhocBvogr+xL8tLA1KDZeNyTBHQLMMSAEWSIHh2YjDAjPUMzPZNAE2UHJ2hUcTBIMygxaADjw5zBgcGDIYAhFGh+F8MGhp0Mu5i0mQKZIpiiIEqZGKF6hBlQAFMyAOxdnYo=
(
T = 1
T = 0
Path
Query
Not Blue (= Red)
跐駈锷椚ה؝ٝؾُ٦ةה鎘皾堣猰㷕ה牞穗㔐騟ה➂䊨濼腉
"'4"❨鿪⠓陽ד㿊劤畍⽆⯓欰ח侄ִג
כׄג➂䊨濼腉הְֲֿהלָ㹀
纏ֿׁהחזגְչت٦زو
أ⠓陽պתדך鎘皾堣嚊䙀ך娖〷
˖ չ➂ך״ֲח䙼罋דֹ堣唒պ湡䭷
׃ג植㖈ךչ鎘皾堣պ嚊䙀ח荚תד
˖ صُ٦ٕٓطحزٙ٦ؙծؔ٦زوزٝծ
䕎䒭鎉铂ծ鎘皾椚锷ծ锷椚㔐騟ծזוכ
ׅץגךずׄ⳿涪挿䭯א
˖ غ٦ؙٔ٦ծؐ؍٦ش٦ծؿؓٝ٥ظ؎
وٝծثُ٦ؚٔٝծؙٔ٦طծءٍظ
ٝծوؕٗحؙ٥ؾحخծך娖〷
ֿךאכ简䕎ٌرٕח如ּ植➿ך䘔欽ر٦ة猰㷕ך⚺麣Ⱗ
https://www.kaggle.com/kaggle-survey-2021
Ԩ 넝礵䏝
Ԩ 넝鸞
Ԩ ꬊ简䕎
Ԩ ؕذ؞ٕٔؕ㢌侧ך䪔ְ
Ԩ ءٝفٕ٥鍑ꅸ׃װְׅ
Ԩ ⚛⻉׃װְׅ
State of Data Science and
Machine Learning 2021
The 2021 Kaggle DS & ML Survey received 25,973 usable responses from participants in 171 different countries and territories.
Q17. Which of the following ML algorithms do you use on a regular basis? (Select all that apply)
➙傈ך鑧겗䲿⣘
˖ 寸㹀啾㔐䌓ך⥋걾⼒䱿㹀٥#FOJHO0WFSUUJOH
噟 荈搫猰㷕דך堣唒㷕统ⵃ崞欽
דِ٦ؠה׃ג寸㹀加،ٝ؟ٝـٕ
הصُ٦ٕٓطحز
⢪גְג⳿⠓植韋ה㉏겗ך稱➜
˖ 㢳㢌ꆀ加ה3F-6طحزךⰅ⸂瑞ⴓⶴ
Object recognition
Game play
ˑָ֮הֲ˒
J’aime la
musique I love music
Speech recognition
Machine translation
Super resolution
3FDBQ
堣唒㷕统כ倜׃ְ ꧟ז
فؚٗٓىؚٝ
فؚٗٓوָع٦س؝٦سׅךדכזֻծⰅ⳿⸂鋅劤⢽ֻׁ鋅ׇגծךⰅ⳿⸂
ⱄ植ֿׅהדչفؚٗٓيպ欰䧭կ4PGUXBSFծ䗍ⴓ〳腉فؚٗٓىؚٝծFUD
p1 p2 p3 p4
ꟼ侧ٌرٕ
Random Forest
Gaussian Process
Logistic Regression
3FDBQ
堣唒㷕统כꟼ侧ٌرٕח״ر٦ةⰻ䯏דך✮庠
ꟼ侧ٌرٕفؚٗٓي 㹀纏幥ך㛇劤怴皾ךさ䧭ד⡲Ⰵ⸂̔⳿⸂ךوحؾؚٝ
3FDBQ
#SFJNBOךאך侄鎮
Breiman L, Statistical Modeling: The Two Cultures. Statist. Sci. 16(3): 199-231, 2001.
https://doi.org/10.1214/ss/1009213726
Rashomon
Occam
Bellman
葺ְ堣唒㷕统ٌرٕך㢳ꅾ䚍 ꬊ♧䠐䚍
✮庠礵䏝הءٝفׁٕ 鍑ꅸ䚍
ך؝ٝؿؙٔز
넝如⯋䚍כンְַ牜状ַ
3FDBQ
#SFJNBOךאך侄鎮
Breiman L, Statistical Modeling: The Two Cultures. Statist. Sci. 16(3): 199-231, 2001.
https://doi.org/10.1214/ss/1009213726
Rashomon
Occam
Bellman
葺ְ堣唒㷕统ٌرٕך㢳ꅾ䚍 ꬊ♧䠐䚍
✮庠礵䏝הءٝفׁٕ 鍑ꅸ䚍
ך؝ٝؿؙٔز
넝如⯋䚍כンְַ牜状ַ
3FDBQ
如⯋ךンְ
ꟼ侧䱿㹀׃✮庠ָさגַך嗚鏾׃ׅךח鋅劤⢽כ⡦挿ְֻ䗳銲
岣䠐5SBJOJOHח䗳銲זךכ⺡锷ծ7BMJEBUJPOװ5FTUח䗳銲 礵䏝䱿㹀窟鎘涸䱿㹀זךד
3FDBQ
如⯋ךンְ
ꟼ侧䱿㹀׃✮庠ָさגַך嗚鏾׃ׅךח鋅劤⢽כ⡦挿ְֻ䗳銲
岣䠐5SBJOJOHח䗳銲זךכ⺡锷ծ7BMJEBUJPOװ5FTUח䗳銲 礵䏝䱿㹀窟鎘涸䱿㹀זךד
3FDBQ
如⯋ךンְ
ꟼ侧䱿㹀׃✮庠ָさגַך嗚鏾׃ׅךח鋅劤⢽כ⡦挿ְֻ䗳銲
岣䠐5SBJOJOHח䗳銲זךכ⺡锷ծ7BMJEBUJPOװ5FTUח䗳銲 礵䏝䱿㹀窟鎘涸䱿㹀זךד
3FDBQ
如⯋ךンְ
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
N = 32 = 9 N = 52 = 25 N = 102 = 100
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q==
y
AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS4FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCsAOP5g==
f
AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS4FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCsAOP5g==
f
AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q==
y
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q==
y AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q==
y AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q==
y
AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q==
y AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q==
y AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q==
y
ֿך⢽דꟼ侧嚊䕎濼חכչ挿ְֻպכ銲ַז˘
3FDBQ
如⯋ךンְ"QQSPYJNBUJPO5IFPSZך〢Ⱙ涸濼鋅
Bronstein MM, Bruna J, Cohen T, Veličković P.
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
arXiv [cs.LG]. 2021. http://arxiv.org/abs/2104.13478
for all
AAAConichVG7SgNBFD1Z3/EVtRFECEbFKkwkqKQK2ohVHkaFJIbddRKX7IvdSUCDlZ0/YGGlYCF2WvgBNv6ART5BLBVsLLzZLAQN6l1m58yZe+6cmavYuuYKxpoBqae3r39gcCg4PDI6Nh6amNxxrZqj8pxq6Zazp8gu1zWT54QmdL5nO1w2FJ3vKtWN1v5unTuuZpnb4sjmRUOumFpZU2VBVCk0W04UDFkcKkojc7J/EC4IK9whSqEIizIvwt0g5oMI/EhZoQcUcAALKmowwGFCENYhw6UvjxgYbOKKaBDnENK8fY4TBElboyxOGTKxVfpXaJX3WZPWrZqup1bpFJ2GQ8owFtgzu2Fv7Indshf2+Wuthlej5eWIZqWt5XZp/Gw6+/GvyqBZ4LCj+tOzQBlrnleNvNse07qF2tbXj8/fsonMQmORXbFX8n/JmuyRbmDW39XrNM9c/OFHIS/0YtSg2M92dIOd5WhsJRpPxyPJdb9Vg5jBHJaoH6tIYhMp5Kj+KW5wh3tpXtqS0lK2nSoFfM0UvoVU+AKNf5vS
f : Rd ! R
AAACmnichVHLLgRBFD3T3u9BJBIWExOPhUxqRBCrCRtiM8a8EsOkuxUq+pXumgk68wN+wMKKxAIf4ANs/ICFTxBLEhsLd3o6EQS3U12nTt1z61RdzTGEJxl7jChNzS2tbe0dnV3dPb190f6BvGdXXJ3ndNuw3aKmetwQFs9JIQ1edFyumprBC9rBcn2/UOWuJ2wrK48cvmWqe5bYFboqiSpHhw6nDydjJWHFSqYq9zXNz9S2d8rROEuwIGI/QTIEcYSRtqO3KGEHNnRUYILDgiRsQIVH3yaSYHCI24JPnEtIBPscNXSStkJZnDJUYg/ov0erzZC1aF2v6QVqnU4xaLikjGGcPbAr9sLu2Q17Yu+/1vKDGnUvRzRrDS13yn0nwxtv/6pMmiX2P1V/epbYxULgVZB3J2Dqt9Ab+urx6cvGYmbcn2AX7Jn8n7NHdkc3sKqv+uU6z5z94UcjL/Ri1KDk93b8BPmZRHIuMbs+G08tha1qxwjGMEX9mEcKK0gjR/V9nOMaN8qosqSsKmuNVCUSagbxJZTsB6MZmAU=
x, x0 2 Rd
-Lipschitz
AAACqHichVFNLwNRFD0d39/FRmIz0fhM2ryKIFYNGwuL+qgSFZkZr0y8zoyZ16a0fgB/wMKKxEIsLLG28Qcs/ASxJLGxcDudRBDcybx73nn33Dlvru4I05OMPYaUmtq6+obGpuaW1rb2jnBn17Jn512Dpwxb2O6KrnlcmBZPSVMKvuK4XMvpgqf1nZnKebrAXc+0rSW55/D1nLZlmVnT0CRRG+FIOTtUHI7SMjhcVjOC73pCs6Q6p2bKajFaHKRMVSzG/FB/gngAIggiaYevkcEmbBjIIwcOC5KwgAaPnjXEweAQt44ScS4h0z/nOEAzafNUxalCI3aH1i3arQWsRftKT89XG/QVQa9LShX97IFdsBd2zy7ZE3v/tVfJ71HxskdZr2q5s9Fx1LP49q8qR1li+1P1p2eJLCZ9ryZ5d3ymcgujqi/sH78sTi30lwbYGXsm/6fskd3RDazCq3E+zxdO/vCjkxf6YzSg+Pdx/ATLo7H4eGxsfiySmA5G1Yhe9GGI5jGBBGaRRIr6H+IKN7hVRpSkklZWq6VKKNB040so+gci3ZxP
|f(x) f(x0)| 6 Lkx x0k
AAAChHichVG7SgNBFD1ZNcZ31EawCQbFQsJE4wMLCdpYWJjERCGK7K6TOLjZXXYngRj8AW0VCysFC/ED/AAbf8AinyCWEWwsvNksiAb1LrNz5sw9d87M1WxDuJKxekDp6OwKdod6evv6BwaHwsMjOdcqOzrP6pZhOTua6nJDmDwrhTT4ju1wtaQZfFs7Wmvub1e44wrL3JJVm++V1KIpCkJXJVGpjf1wlMWYF5F2EPdBFH5sWuEH7OIAFnSUUQKHCUnYgAqXvjziYLCJ20ONOIeQ8PY5TtBL2jJlccpQiT2if5FWeZ81ad2s6XpqnU4xaDikjGCSPbM71mBP7J69sI9fa9W8Gk0vVZq1lpbb+0OnY5n3f1UlmiUOv1R/epYoYMnzKsi77THNW+gtfeX4spFZTk/WptgNeyX/16zOHukGZuVNv03x9NUffjTyQi9GDYr/bEc7yM3G4guxRCoRTa76rQphHBOYpn4sIol1bCJL9TnOcI4LJajMKHPKfCtVCfiaUXwLZeUTeMOPzA==
L
Donoho DL,
High-dimensional data analysis: The curses and blessings of dimensionality.
Plenary Lecture, AMS National Meeting on Mathematical Challenges of the 21st Century. 2000.
׃⡂Ⰵ⸂חכ⡂⳿⸂הְֲ箢ְ鸬竲䚍 -JQTDIJU[鸬竲䚍
׃ַ铬ׁזְ㜥さחכ♧圫ז
ė鵚⡂ח ė
Eؔ٦تך؟ٝفٕ侧ָ䗳銲חזկ4PCPMFWDMBTTהַח׃ג葺ֻזזְկ
⢽Eדչ挿ְֻպך礵䏝実זEדכ⭙挿䗳銲דꬊ植㹋涸˘
3FDBQ
如⯋ךンְ넝如⯋瑞ךꬊ湫䠬䚍
堣唒㷕统װػة٦ٝ钠陎ך侄猰剅ח״ֻ⳿גֻ⢽
猘כ㷕欰儗➿
$#JTIPQ/FVSBM/FUXPSLTGPS1BUUFSO3FDPHOJUJPO
ד剑ⴱח鋅
˖ E如⯋瑞חֶֽ⽃⡘椔 Sך馄椔
ך⡤琎
AAAC73ichVHNThRBEK4dVFZAWeBi4mXiBrJ72dQSIsTEhOhBj/ztQkLjpqenZ2mZv53p3WSdzAvwAhxMjJB4ID6AD+DFoxcOPILhCMGLidbOTiJKxJ7M9Fdf1VfzdZcVuirWiKcFY+TW7Tujxbtj4xP37k+WpqabcdCNhGyIwA2iLYvH0lW+bGilXbkVRpJ7lis3rb3ng/xmT0axCvwN3Q/ljsfbvnKU4JqoVul1s2JXzacmcyIuEhaqV8kQ2mkyn6bp1YgJO9DsBfc8zlzp6MrVXKTau7qamkwHJpqs0+W2WbGzkCnf0f1qq1TGGmbLvA7qOShDvlaC0idgYEMAArrggQQfNGEXOMT0bEMdEELidiAhLiKksryEFMZI26UqSRWc2D36tinazlmf4kHPOFML+otLb0RKE2bxBI/xHL/gR/yGP/7ZK8l6DLz0abeGWhm2JvcfrH//r8qjXcPub9WNnjU4sJR5VeQ9zJjBKcRQ33tzcL7+ZG02mcMjPCP/h3iKn+kEfu9CfFiVa29v8GORF7oxGlD973FcB835Wv1xbWF1obz8LB9VER7CI6jQPBZhGV7CCjSo/1e4hJ8FMDrGgfHOeD8sNQq5Zgb+WMbxL1/dugg=
V (d) =
⇡ d
2
d
2
· d
2
! 0 (d ! 1)
https://www.math.ucdavis.edu/~strohmer/courses/180BigData/180lecture1.pdf
AAAChHichVHLSsNAFD2Nr/ps1Y3gRiwVF1JutD5wIUU3LltrVdAiSZzW0DQJSVqoxR/QreLClYIL8QP8ADf+gAs/QVxWcOPC2zQgWtQbJnPmzD13zsxVbUN3PaLnkNTR2dXdE+7t6x8YHIpEh0e2XKviaCKnWYbl7KiKKwzdFDlP9wyxYztCKauG2FZLa8397apwXN0yN72aLfJlpWjqBV1TPKYy8n40RgnyY6IdyAGIIYi0Fb3HHg5gQUMFZQiY8BgbUODytwsZBJu5POrMOYx0f1/gGH2srXCW4AyF2RL/i7zaDViT182arq/W+BSDh8PKCcTpiW6pQY90Ry/08Wutul+j6aXGs9rSCns/cjKWff9XVebZw+GX6k/PHgpY8r3q7N32meYttJa+enTRyC5vxOtTdE2v7P+KnumBb2BW37SbjNi4/MOPyl74xbhB8s92tIOt2YS8kEhmkrHUatCqMMYxiWnuxyJSWEcaOa4vcIoznEvd0ow0J823UqVQoBnFt5BWPgE/Y4+x
1
AAACjnichVHNSgJRFD5Of2Y/Wm2CNpIYreQYZhFEUhuX/uQPqMjMeLPBcWaauQomvkD7aBEUBS2iB+gB2vQCLXyEaGnQpkXHcSBKsjPcud/97vnO/e49kqEqFkfsuoSx8YnJKfe0Z2Z2bt7rW1jMWnrDlFlG1lXdzEuixVRFYxmucJXlDZOJdUllOal20N/PNZlpKbp2yFsGK9XFqqYcKbLIiSpgaLNonZi8XemUfQEMoR3+YRB2QACcSOi+RyhCBXSQoQF1YKABJ6yCCBZ9BQgDgkFcCdrEmYQUe59BBzykbVAWowyR2Br9q7QqOKxG635Ny1bLdIpKwySlH4L4gvfYw2d8wFf8/LNW267R99KiWRpomVH2ni2nP/5V1WnmcPytGumZwxFs214V8m7YTP8W8kDfPL3opXdSwfYa3uIb+b/BLj7RDbTmu3yXZKnLEX4k8kIvRg0K/27HMMhuhMLRUCQZCcT2nVa5YQVWYZ36sQUxiEMCMvaLnsMVXAs+ISrsCnuDVMHlaJbgRwjxLwzik/k=
0.5
p
d
AAAChnichVHLSsNAFD3GV62PVt0IbopFcRVupVVxVXTjsg9rC1okidMamiYhSQta/AHBrV24UnAhfoAf4MYfcOEniEsFNy68TQOixXrDZM6cuefOmbmqbeiuR/Q8IA0ODY+MhsbC4xOTU5Ho9MyuazUcTRQ0y7Cckqq4wtBNUfB0zxAl2xFKXTVEUa1tdfaLTeG4umXueMe2KNeVqqlXdE3xmMqTnDqIxkkmP2K9IBGAOILIWNF77OMQFjQ0UIeACY+xAQUuf3tIgGAzV0aLOYeR7u8LnCLM2gZnCc5QmK3xv8qrvYA1ed2p6fpqjU8xeDisjGGRnuiW3uiR7uiFPv+s1fJrdLwc86x2tcI+iJzN5T/+VdV59nD0rerr2UMF675Xnb3bPtO5hdbVN0/ab/mN3GJria7plf1f0TM98A3M5rt2kxW5yz5+VPbCL8YNSvxuRy/YXZETq3Iym4ynN4NWhTCPBSxzP9aQxjYyKHD9Ks5xgbYUkmQpJa11U6WBQDOLHyGlvwBbQpAn
0.5 AAAChnichVHLSsNAFD2Nr1ofrboR3BRLxVWZlmpFEIpuXPZhH1BLSdKxhqZJSNJCLf6A4NYuXCm4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzJUNVLJuxnkeYmJyanvHO+ubmFxb9gaXlvKU3TZnnZF3VzaIkWlxVNJ6zFVvlRcPkYkNSeUGqHwz2Cy1uWoquHdltg5cbYk1TThRZtInKVvdilUCIRZgTwVEQdUEIbqT0wCOOUYUOGU00wKHBJqxChEVfCVEwGMSV0SHOJKQ4+xzn8JG2SVmcMkRi6/Sv0arkshqtBzUtRy3TKSoNk5RBhNkLu2d99swe2Cv7/LNWx6kx8NKmWRpquVHxX6xmP/5VNWi2cfqtGuvZxgl2HK8KeTccZnALeahvnXX72d1MuLPBbtkb+b9hPfZEN9Ba7/Jdmmeux/iRyAu9GDUo+rsdoyAfi0S3I/F0PJTcd1vlxRrWsUn9SCCJQ6SQo/o1XOIKXcErRIQtITFMFTyuZgU/Qkh+AeO5kGc=
d = 2 AAAChnichVHLSsNAFD2Nr1ofrboR3BRLxVWZSrUiCEU3LvuwD6ilJOm0hqZJSNJCLf6A4NYuXCm4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzJUNVLJuxnkeYmJyanvHO+ubmFxb9gaXlnKU3TZlnZV3VzYIkWlxVNJ61FVvlBcPkYkNSeV6qHw728y1uWoquHdttg5caYk1Tqoos2kRlKvuxciDEIsyJ4CiIuiAEN5J64BEnqECHjCYa4NBgE1YhwqKviCgYDOJK6BBnElKcfY5z+EjbpCxOGSKxdfrXaFV0WY3Wg5qWo5bpFJWGScogwuyF3bM+e2YP7JV9/lmr49QYeGnTLA213Cj7L1YzH/+qGjTbOP1WjfVso4pdx6tC3g2HGdxCHupbZ91+Zi8d7mywW/ZG/m9Yjz3RDbTWu3yX4unrMX4k8kIvRg2K/m7HKMhtRaI7kVgqFkocuK3yYg3r2KR+xJHAEZLIUv0aLnGFruAVIsK2EB+mCh5Xs4IfISS+AOf5kGk=
d = 4
AAAChHichVHLSsNAFD2Nr/ps1Y3gRiwVF1JutD5wIUU3LltrVdAiSZzW0DQJSVqoxR/QreLClYIL8QP8ADf+gAs/QVxWcOPC2zQgWtQbJnPmzD13zsxVbUN3PaLnkNTR2dXdE+7t6x8YHIpEh0e2XKviaCKnWYbl7KiKKwzdFDlP9wyxYztCKauG2FZLa8397apwXN0yN72aLfJlpWjqBV1TPKYy8n40RgnyY6IdyAGIIYi0Fb3HHg5gQUMFZQiY8BgbUODytwsZBJu5POrMOYx0f1/gGH2srXCW4AyF2RL/i7zaDViT182arq/W+BSDh8PKCcTpiW6pQY90Ry/08Wutul+j6aXGs9rSCns/cjKWff9XVebZw+GX6k/PHgpY8r3q7N32meYttJa+enTRyC5vxOtTdE2v7P+KnumBb2BW37SbjNi4/MOPyl74xbhB8s92tIOt2YS8kEhmkrHUatCqMMYxiWnuxyJSWEcaOa4vcIoznEvd0ow0J823UqVQoBnFt5BWPgE/Y4+x
1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCKDQTEuDNGNSx7ySJCQtgzYUNqmLSRI/AETt7JwpYkL4wf4AW78ARd8gnGJiRsXXkoTo0S8zXTOnLnnzpm5kqEqls1YzyNMTE5Nz3hnfXPzC4v+wNJyztKbpsyzsq7qZkESLa4qGs/aiq3ygmFysSGpPC/VDwf7+RY3LUXXju22wUsNsaYpVUUWbaIylf1YORBiEeZEcBREXRCCG0k98IgTVKBDRhMNcGiwCasQYdFXRBQMBnEldIgzCSnOPsc5fKRtUhanDJHYOv1rtCq6rEbrQU3LUct0ikrDJGUQYfbC7lmfPbMH9so+/6zVcWoMvLRploZabpT9F6uZj39VDZptnH6rxnq2UcWu41Uh74bDDG4hD/Wts24/s5cOdzbYLXsj/zesx57oBlrrXb5L8fT1GD8SeaEXowZFf7djFOS2ItGdSCwVCyUO3FZ5sYZ1bFI/4kjgCElkqX4Nl7hCV/AKEWFbiA9TBY+rWcGPEBJf6hqQag==
d > 4
AAACjnichVHNSgJRFD5Of2Y/Wm2CNpIYreQoZhFEUhuX/uQPqMjMdLPBcWaauQomvkD7aBEUBS2iB+gB2vQCLXyEaGnQpkXHcSBKsjPcud/97vnO/e49kqEqFkfsuoSx8YnJKfe0Z2Z2bt7rW1jMWXrDlFlW1lXdLEiixVRFY1mucJUVDJOJdUlleam239/PN5lpKbp2wFsGK9fFqqYcKbLIiSpiaKNknZi8HelUfAEMoR3+YRB2QACcSOq+RyjBIeggQwPqwEADTlgFESz6ihAGBIO4MrSJMwkp9j6DDnhI26AsRhkisTX6V2lVdFiN1v2alq2W6RSVhklKPwTxBe+xh8/4gK/4+Wettl2j76VFszTQMqPiPVvOfPyrqtPM4fhbNdIzhyPYsr0q5N2wmf4t5IG+eXrRy2yng+01vMU38n+DXXyiG2jNd/kuxdKXI/xI5IVejBoU/t2OYZCLhMKxUDQVDcT3nFa5YQVWYZ36sQlxSEASsvaLnsMVXAs+ISbsCLuDVMHlaJbgRwiJL6Jhk8c=
0.5
p
2
AAACjnichVHNSgJRFD5Of2Y/Wm2CNpIYreQYZhFEUhuX/uQPqMjMeLPBcWaauQomvkD7aBEUBS2iB+gB2vQCLXyEaGnQpkXHcSBKsjPcud/97vnO/e49kqEqFkfsuoSx8YnJKfe0Z2Z2bt7rW1jMWnrDlFlG1lXdzEuixVRFYxmucJXlDZOJdUllOal20N/PNZlpKbp2yFsGK9XFqqYcKbLIiSpgaLNonZi8XemUfQEMoR3+YRB2QACcSOi+RyhCBXSQoQF1YKABJ6yCCBZ9BQgDgkFcCdrEmYQUe59BBzykbVAWowyR2Br9q7QqOKxG635Ny1bLdIpKwySlH4L4gvfYw2d8wFf8/LNW267R99KiWRpomVH2ni2nP/5V1WnmcPytGumZwxFs214V8m7YTP8W8kDfPL3opXdSwfYa3uIb+b/BLj7RDbTmu3yXZKnLEX4k8kIvRg0K/27HMMhuhMLRUCQZCcT2nVa5YQVWYZ36sQUxiEMCMvaLnsMVXAs+ISrsCnuDVMHlaJbgRwjxLwzik/k=
0.5
p
d
!?
Unit Cube in
Unit Ball
AAAChHichVHLSsNAFD2Nr/ps1Y3gRiwVF1JutD5wIUU3LltrVdAiSZzW0DQJSVqoxR/QreLClYIL8QP8ADf+gAs/QVxWcOPC2zQgWtQbJnPmzD13zsxVbUN3PaLnkNTR2dXdE+7t6x8YHIpEh0e2XKviaCKnWYbl7KiKKwzdFDlP9wyxYztCKauG2FZLa8397apwXN0yN72aLfJlpWjqBV1TPKYy8n40RgnyY6IdyAGIIYi0Fb3HHg5gQUMFZQiY8BgbUODytwsZBJu5POrMOYx0f1/gGH2srXCW4AyF2RL/i7zaDViT182arq/W+BSDh8PKCcTpiW6pQY90Ry/08Wutul+j6aXGs9rSCns/cjKWff9XVebZw+GX6k/PHgpY8r3q7N32meYttJa+enTRyC5vxOtTdE2v7P+KnumBb2BW37SbjNi4/MOPyl74xbhB8s92tIOt2YS8kEhmkrHUatCqMMYxiWnuxyJSWEcaOa4vcIoznEvd0ow0J823UqVQoBnFt5BWPgE/Y4+x
1
AAAChXichVHLSsNAFD2Nr1pfVTeCm2KpuLHcSFFxoUU3LvuwWqhFkjjVYJqEJC1o8QfErbpwpeBC/AA/wI0/4KKfIC4ruHHhbRoQFfWGyZw5c8+dM3NV29Bdj6gZkrq6e3r7wv2RgcGh4ZHo6Nima9UcTRQ0y7Ccoqq4wtBNUfB0zxBF2xFKVTXElnqw1t7fqgvH1S1zwzu0Rbmq7Jl6RdcUj6ncsrwTjVOS/Ij9BHIA4ggiY0XvsY1dWNBQQxUCJjzGBhS4/JUgg2AzV0aDOYeR7u8LHCPC2hpnCc5QmD3g/x6vSgFr8rpd0/XVGp9i8HBYGUOCnuiWWvRId/RM77/Wavg12l4OeVY7WmHvjJxM5N/+VVV59rD/qfrTs4cKFn2vOnu3faZ9C62jrx9dtPJLuURjmq7phf1fUZMe+AZm/VW7yYrc5R9+VPbCL8YNkr+34yfYnEvK88lUNhVPrwatCmMSU5jhfiwgjXVkUOD6FZziDOdSnzQrpaT5TqoUCjTj+BLSygfo4Y/5
> 1
!?
3FDBQ
如⯋ךンְ椚锷♳כֲתְֻֻֽזֲׁ
넝如⯋䚍Ⰵ⸂㢌侧ָ㢳ֺׅ Ύ麓ⶱػًٓة⻉ػًٓة侧ָ㢳ֺׅ
3FT/FU♰ػًٓة
3FT/FU♰ػًٓة
&DJFOU/FU#♰ػًٓة
7((⭙♰ػًٓة
歗⫷ךתתⰅ⸂ׅ㜥さ
ؾؙإٕךؕٓ٦歗⫷̔㢌侧
ؾؙإٕךؕٓ٦歗⫷̔♰㢌侧
MBZFS
IFBET#&35⭙♰ػًٓة
MBZFS
IFBET#&35⭙♰ػًٓة
(159-⭙♰ػًٓة
(15⭙ػًٓة
(PQIFS⭙ػًٓة
Ԩ 堣唒㷕统כⰅ⸂ׁגזְ䞔㜠Ⰻֻ
罋䣁׃גֻזְ˘ 亻⡂湱ꟼٔأؙ
Ԩ הִ֮׆葿ղז㢌侧Ⰵָ
歗⫷
鎉铂
植㖈ך堣唒㷕统כչ侧涰♰如⯋ד侧⼪♰ػًٓةךꟼ侧ؿ؍حذ؍ؚٝ׃גְպ朐屣ד
➂חהגךչؽحؚպر٦ةׅⰋֻ駈זְכ׆דծ椚锷♳כֲתְֻֻכ׆ָזְ
堣唒㷕统ך剑㣐ךꟼ䗰זֿך搀椚٦鏣㹀חꟼ׆ծהֲתְֻׯֲך
3FDBQ
如⯋ךンְ넝如⯋דⰻ䯏זג饯ֽֿזְ
Balestriero R, Pesenti J, LeCun Y.
Learning in High Dimension Always Amounts to Extrapolation.
arXiv [cs.LG]. 2021. http://arxiv.org/abs/2110.09485
넝如⯋דכⰻ䯏זג饯ֿ然桦כئٗהְֲطة
넝如⯋ E
דכչⰻ䯏הכ⡦ַպչⰻ䯏ַ㢩䯏ַպ
הְֲ㛇劤涸陽锷ׅ㹋כ噰גꬊ荈僇
https://youtu.be/86ib0sfdFtw
儗⟃♳ח床衼罏㼎锑!.-4USFFU5BML
嗚叨挿
鋅劤挿꧊さ
ך⳻⺪
• "on any high-dimensional (>100) dataset,
interpolation almost surely never happens."
• "Those results challenge the validity of our
current interpolation/extrapolation definition as
an indicator of generalization performances. "
ⰻ䯏嗚叨挿ָ鎮箺ر٦ة挿ך⳻⺪ח衅הֹח
ワך挿ך⦼ַךZ⦼寸ֿה
3FDBQ
如⯋ךンְ넝ְ亻⡂湱ꟼٔأؙ
˖ 亻⡂湱ꟼךٔأؙ㣐ֹז㢌侧ف٦ٕ O㢌侧
ַ#FTU4VCTFU㔐䌓 N㢌侧
䱱ׅה
չ劤䔲כⰋֻ湱ꟼָזְחꟼ׆պקר䌢ח葺ְ㔐䌓ٌرָٕ鋅אַג׃תֲ!
˖ ؛ٌ؎ٝؿؓ歲דכꬊ䌢ח〢ַֻ濼גְ،٦ثؿ؋ؙز 5PQMJTT
Fan J, Han F, Liu H.
Challenges of Big Data Analysis. Natl Sci Rev. 2014;1: 293–314.
AAACoXicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIaETEG+rEpOSXFOtExKdoxhRn5ir4xadoGOh4asYLKBvoGYCBAibDEMpQZoCCgHyB7QwxDCkM+QzJDKUMuQypDHkMJUB2DkMiQzEQRjMYMhgwFADFYhmqgWJFQFYmWD6VoZaBC6i3FKgqFagiESiaDSTTgbxoqGgekA8ysxisOxloSw4QFwF1KjCoGlw1WGnw2eCEwWqDlwZ/cJpVDTYD5JZKIJ0E0ZtaEM/fJRH8naCuXCBdwpCB0IXXzSUMaQwWYLdmAt1eABYB+SIZor+savrnYKsg1Wo1g0UGr4HuX2hw0+Aw0Ad5ZV+SlwamBs3G454koFuAIQaMIEP06MBkhBnpGZrpmQSaKDs4QaOKg0GaQYlBAxgf5gwODB4MAQyhQPObGFYwbGTYxKTM5MkUwBQEUcrECNUjzIACmKIBAhaZTQ==
(X1, . . . , Xd) ⇠ Nd(0, I)
AAACvnichVFNSxtBGH6y9atp1VgvBS9Lg0VBwqxIbQtCaC89amw0YGSZXSfJ6n51dhK0m/yB/oEeeigVeij+AH+ACJ7aUw/+BPFooZce+u5mQVTUd5mdZ555n3eemdcKXSdSjJ3mtAcDg0PDIw/zjx6Pjo0XJp6sRUFb2qJqB24gaxaPhOv4oqoc5YpaKAX3LFesWztvk/31jpCRE/jv1V4oNj3e9J2GY3NFlFl4VW9xFcuevqTXPb5rxtv1pvgQudxX+nxP7yasakkvtgMpezM105jTa+b2rN41C0VWYmnoN4GRgSKyWA4Kh6hjCwFstOFBwIci7IIjom8DBhhC4jYREycJOem+QA950rYpS1AGJ3aH/k1abWSsT+ukZpSqbTrFpSFJqWOa/WY/2AU7YQfsjP27tVac1ki87NFs9bUiNMc/PV39e6/Ko1mhdam607NCAy9Trw55D1MmuYXd13c+fr5YfV2Zjp+zfXZO/r+xU3ZEN/A7f+zvK6Ly5Q4/FnmhF6MGGdfbcROszZeMF6WFlYVi+U3WqhFM4RlmqB+LKOMdllGl+l9xjJ/4pZW1huZpQT9Vy2WaSVwJbfc/j5mmYg==
ˆ
r = max
j>2
|corr(X1, Xj)|
AAAC8nichVHNSiNBEK6Muv6srlEvgpfBoLggoUeCiiCIXjxqstGAI0PP2Ek6zh89naBO8gK+gKAnlT0su3cfYC97Xzz4CMseXRDBgzU/ICqrNfRU1df1VX/dZfo2DyQhNxmlq7vnQ29f/8DHwaFPw9mR0a3AawqLlS3P9kTFpAGzucvKkkubVXzBqGPabNvcX4v2t1tMBNxzv8hDn+06tObyKreoRMjIOnqdyrDYUZdV3aEHRtgutZcLnTTRTSap0cDUZlXZjlBZF05oeUJ0YmymYmizqh40HSNs6NxVS1icsNSK0dAFr9XlZzXxbSObI3kSm/o60NIgB6lteNkr0GEPPLCgCQ4wcEFibAOFAL8d0ICAj9guhIgJjHi8z6ADA8htYhXDCoroPv5rmO2kqIt51DOI2RaeYuMSyFRhilyTb+SW/CLfyR/y8N9eYdwj0nKI3ky4zDeGj8dLd++yHPQS6k+sNzVLqMJirJWjdj9GoltYCb91dHJbWipOhdPkgvxF/efkhvzEG7itf9bXTVY8e0OPiVrwxXBA2stxvA625vLafL6wWcitrKaj6oMJmIQZnMcCrMA6bEAZ+/+G+4yS6VKkcqqcK5dJqZJJOWPwzJQfj/5suoY=
ˆ
R = max
|S|=4
max
j
corr
0
@X1,
X
j2S
jXj
1
A
0.3 0.4 0.5 0.6 0.5 0.6 0.7 0.8
AAACinichVHLTsJAFL3UFyIK6sbEDZFgXJEpIT43RF245CGPBAhp6wANfaUdSLDhB9y5MpGVJi6MH+AHuPEHXPAJxiUmblx4W5oYJeJtpnPmzD13zswVDUW2GCEDHzc1PTM7558PLAQXl0Lh5ZWCpbdNieYlXdHNkihYVJE1mmcyU2jJMKmgigotiq0jZ7/YoaYl69op6xq0qgoNTa7LksCQKlaaArOzvVo4SuLEjcg44D0QBS/SevgRKnAGOkjQBhUoaMAQKyCAhV8ZeCBgIFcFGzkTkezuU+hBALVtzKKYISDbwn8DV2WP1XDt1LRctYSnKDhMVEYgRl7IPRmSZ/JAXsnnn7Vst4bjpYuzONJSoxa6WMt9/KtScWbQ/FZN9MygDruuVxm9Gy7j3EIa6TvnV8PcfjZmb5Jb8ob+b8iAPOENtM67dJeh2f4EPyJ6wRfDBvG/2zEOCok4vx1PZpLR1KHXKj+swwZsYT92IAUnkIa8W/8SrqHPBbkEt8cdjFI5n6dZhR/BHX8B43OSnw==
ˆ
R
AAACinichVHLTsJAFL3UFyIK6sbEDZFgXJEpIT43RF245CGPBAhp6wANfaUdSLDhB9y5MpGVJi6MH+AHuPEHXPAJxiUmblx4W5oYJeJtpnPmzD13zswVDUW2GCEDHzc1PTM7558PLAQXl0Lh5ZWCpbdNieYlXdHNkihYVJE1mmcyU2jJMKmgigotiq0jZ7/YoaYl69op6xq0qgoNTa7LksCQKlaaArPNXi0cJXHiRmQc8B6IghdpPfwIFTgDHSRogwoUNGCIFRDAwq8MPBAwkKuCjZyJSHb3KfQggNo2ZlHMEJBt4b+Bq7LHarh2alquWsJTFBwmKiMQIy/kngzJM3kgr+Tzz1q2W8Px0sVZHGmpUQtdrOU+/lWpODNofqsmemZQh13Xq4zeDZdxbiGN9J3zq2FuPxuzN8kteUP/N2RAnvAGWuddusvQbH+CHxG94Ithg/jf7RgHhUSc344nM8lo6tBrlR/WYQO2sB87kIITSEPerX8J19DnglyC2+MORqmcz9Oswo/gjr8AJ6KSvw==
ˆ
r
O㔐דءىُٖ٦ز
3FDBQ
如⯋ךンְ庠䏝ך꧊⚥植韋
˖ 庠䏝ך꧊⚥植韋넝如⯋瑞דכ؟ٝفٕ挿ך騃ꨄָׅץגקהוずׄחזג׃תֲ
˖ 騃ꨄ㽯䏝ד䞔㜠ؿ؍ٕةؚׅٔٝ㜥さծ넝如⯋חזהקרⰋ嗚稊ח鵚ֻזֿהָ
ر٦ةك٦أװ䞔㜠嗚稊噟歲ד䭷䶯ׁגֹկ
#FZFSך⢽
O⦐ךE如⯋挿
K. Beyer+, When Is “Nearest Neighbor” Meaningful? ICDT’99
V. Pestov, On the geometry of similarity search: dimensionality curse and concentration of measure,
Information Processing Letters, 1999.
植㖈ך堣唒㷕统ך⚺ꟼ䗰וֲװג넝如⯋䚍䩛䥿ֽ
姻⻉ךرؠ؎ٝ 㽷䨽涸㸜㹀䚍٥أػ٦أ䚍٥鸬竲䚍٥ٗغأز䚍٥FUD
&YQMJDJUז姻⻉ֽדכזֻ然桦涸䶏⹛ 4(%瘝
ח״*NQMJDJUSFHVMBSJ[BUJPO
葺ְ䠬ׄךⴱ劍⦼ךرؠ؎ٝ
㣐鋉垷✲㷕统ך鯄獳זוח״葺ְչ8BSN4UBSUպך鏣鎘
ٌرٕ圓鸡װⰅ⸂㢌侧٥Ⰵ⸂邌植װةأؙ圓鸡ךرؠ؎ٝ
帾㾴㷕统ך圓鸡رؠ؎ٝػة٦ٝծ暴䗙ꆀؒٝآص،ؚٔٝծ䎗⡦涸帾㾴㷕统ծ㢳ٌ٦تٕ
ְְז灇瑔ָ֮˘
ָծ㛇劤涸חכ湡ךةأؙח״ֻوحثׅչ葺ְ䌓秛غ؎،أպךرؠ؎ٝך㉏겗
넝ְ荈歋䏝䭯א堣唒㷕统ٌرָٕ♶鿪さ٥♶黝䔲זꟼ侧䠐㔳ׇ׆邌植׃ג׃תזְ
״ֲٌرٕ瑞װ㷕统倯䒭װٌرٕ圓鸡ⵖꣲ٥ⵖ秈٥ⵖ䖴ׅ 䠐㔳涸غ؎،أ铬ׅ
Inductive Bias
ر٦ة Decision
Tree
Random
Forest GBDT
Nearest
Neighbor
Logistic
Regression
SVM
Gaussian
Process
Neural
Network
1JFDFXJTFDPOTUBOU
3FDBQ寸㹀啾ה剑鵚ꦄ岀1JFDFXJTFDPOTUBOUQSFEJDUPST
1JFDFXJTFMJOFBS
3FDBQ寸㹀啾ה剑鵚ꦄ岀1JFDFXJTFDPOTUBOUQSFEJDUPST
Journal of the American Statistical Association , Jun., 2006, Vol. 101, No. 474 (Jun., 2006), pp. 578-590
https://www.jstor.org/stable/27590719
"We introduce a concept of potential nearest neighbors (k-PNNs) and show that random
forests can be viewed as adaptively weighted k-PNN methods. "
3FDBQ寸㹀啾ה剑鵚ꦄ岀1JFDFXJTFDPOTUBOUQSFEJDUPST
˖ ٓٝتيطأ
˖ ،ٝ؟ٝـٕ
ָ꒲חזגְ
醱꧟זꟼ侧ח厫鮾ח
ؿ؍حزׅחכ
⸇ִג
3FDBQ寸㹀啾ה剑鵚ꦄ岀
剑鵚ꦄ岀זג˘ה䙼ֲה䙼ְתָׅծ،مדⴓַ知稆ׁה
㹋欽䚍ꬊ䌢ח⮚椚锷涸䚍颵Ⱟי⪒ִגְ˘
The Bible or "The Yellow Terror"
by Luc, Laci, Gábor
4UPOFךِصغ٦؟ٕ♧荜䚍㹀椚
ך䕦갟ד剑鵚ꦄ岀כ䎃➿ך
ظٝػًٓزٔحؙ窟鎘ך椚锷؝ىُصذ؍ך♧㣐ꟼ䗰✲
3FDBQ寸㹀啾ה剑鵚ꦄ岀
剑鵚ꦄ岀זג˘ה䙼ֲה䙼ְתָׅծ،مדⴓַ知稆ׁה
㹋欽䚍ꬊ䌢ח⮚椚锷涸䚍颵Ⱟי⪒ִגְ˘
The Bible or "The Yellow Terror"
by Luc, Laci, Gábor
4UPOFךِصغ٦؟ٕ♧荜䚍㹀椚
ך䕦갟ד剑鵚ꦄ岀כ䎃➿ך
ظٝػًٓزٔحؙ窟鎘ך椚锷؝ىُصذ؍ך♧㣐ꟼ䗰✲
〢Ⱙ涸ז䱿庠窟鎘㷕 ػًٓزٔحؙ窟鎘
٦ي鏣㹀錁庠⢽ך⦼ַֽ欰䧭㐻ךػًٓة⦼ ĞהĤ
䔲ג
AAACnHichVHLSsNAFL2Nr1ofrbpQEKRYlAoaboovBEHUhSCKr7aCLSWJ0zqYF0laqMUf8AdcuFJxIeraD3DjD7jwE8SlghsX3qYB0WK9YTJnztxz58xcxdK44yI+B4Sm5pbWtmB7qKOzqzsc6elNOWbRVllSNTXT3lVkh2ncYEmXuxrbtWwm64rG0srhUnU/XWK2w01jxy1bLKvLBYPnuSq7ROUi/evxjF6cn5DExHg04/CCLs8nxKmxXCSGInoRrQeSD2Lgx4YZuYcM7IMJKhRBBwYGuIQ1kMGhbw8kQLCIy0KFOJsQ9/YZHEOItEXKYpQhE3tI/wKt9nzWoHW1puOpVTpFo2GTMgoj+ITX+IaPeIMv+PlnrYpXo+qlTLNS0zIrFz4Z2P74V6XT7MLBt6qhZxfyMOt55eTd8pjqLdSavnR0+rY9tzVSGcULfCX/5/iMD3QDo/SuXm2yrbMGfhTyQi9GDZJ+t6MepBKiNC1Obk7GFhb9VgVhEIYhTv2YgQVYgQ1Ier4u4RbuhCFhWVgV1mqpQsDX9MGPEFJfeQKW8A==
N(µ = 1.2, = 2.5)
✉侧欰䧭
欰䧭㐻ךչ㘗պ 姻鋉ⴓ䋒הַ
⟎㹀׃זְ
Given , a real i.i.d. sequence, estimate
跐駈( CPS-VHPTJ
The Bible or "The Yellow Terror"
by Luc, Laci, Gábor
NeurIPS 2021 Invited Talk (Breiman Lecture)
Do we know how to estimate the mean?
JJE然桦㢌侧ך䎂㖱⦼䱿㹀ׅ鑧
AAACnHichVG7SgNREJ2s7/hI1EJBkGBQLCTMRo3GStRCECE+EgNJCLubm7i4L3ZvAhr8AX/AwkrFQtTaD7DxByzyCWKpYGPh7GZFLBJnuXtnzsyZe+4d2dJUhyM2AkJHZ1d3T29fsH9gcCgUHh7JOGbVVlhaMTXTzsqSwzTVYGmuco1lLZtJuqyxA/lo3c0f1JjtqKaxz48tVtCliqGWVUXiBBXDY3lZr2dPi+JcvmRyZ84PKRPFGCYWk/MYwdgiikvJJDmIieX5eEQkx7Uo+JYyw4+QhxKYoEAVdGBgACdfAwkc+nIgAoJFWAHqhNnkqV6ewSkEiVulKkYVEqFH9K9QlPNRg2K3p+OxFTpFo2UTMwLT+IK3+I7PeIev+NWyV93r4Wo5pl1ucplVDJ2N733+y9Jp53D4y2qrmUMZlj2tKmm3PMS9hdLk107O3/dWdqfrM3iFb6T/Ehv4RDcwah/KzQ7bvWijRyYt9GI0oJ8pRFo7mXhMTMQWdhaiq2v+qHphAqZgluaxBKuwCSlIe7qu4R4ehElhQ9gStpulQsDnjMIfEzLfLdyZlw==
X1, . . . , Xn
AAACo3ichVFNSxtRFD1O/aq2JtqNUJDBkOIq3PEjmkJBLAXBjUajARPCvPGpg/PFzEvADtl15R/owlULXbQuW/AHuPEPuPAniEsFNy56ZxIpLrR3ePPOO++e+857VwSOHSmiyx7tRW9f/8Dgy6HhV69HMtnRsc3Ib4aWrFi+44dVYUbSsT1ZUbZyZDUIpekKR26Jg4/J/lZLhpHtexvqMJB119zz7F3bMhVTjexETbhxzW229Q96zTXVvhDxp7aesNV2w2hkc1Sg4lxphnQqzJExXyoxICouzEzrBoMkcujGqp89RQ078GGhCRcSHhRjByYi/rZhgBAwV0fMXMjITvcl2hhibZOzJGeYzB7wf49X213W43VSM0rVFp/i8AhZqSNPF/STbuicTuiK7p+sFac1Ei+HPIuOVgaNzNH4+t1/VS7PCvv/VM96VtjFQurVZu9ByiS3sDr61uevN+vvy/n4HX2na/b/jS7pjG/gtW6tH2uyfPyMH8Fe+MW4QQ9d0J8Gm9MFo1iYXZvNLS51WzWIt5jEFPdjHotYxioqXP8LfuE3/mh5bUUraxudVK2nq3mDR6HV/wJh+5ws
µ = EX1
״葺ְך֮ך
AAACqHichVG7ThtBFD1sSHjkgZM0SDQrLBBJ4dzlYTASEgpNSvMwdoSJtbsZYMS+tDu2MCt/APwARapEokApKIGaJj9AwScgSpBoKHJ37ShKAbmr2Tlz5p47Z+ZagSMjRXTZpT3pfvqsp7ev//mLl68GMq/frEZ+PbRFyfYdP6xYZiQc6YmSksoRlSAUpms5omxtLyT75YYII+l7K6oZiHXX3PTkhrRNxVQtk60qsaMi1XTEWDWqu7VYzhmtL55etdy40qrJdx+SLMpRfqowQTrlpsiYLhQYEOVnJsZ1g0ESWXSi6GdOUMVX+LBRhwsBD4qxAxMRf2swQAiYW0fMXMhIpvsCLfSzts5ZgjNMZrf5v8mrtQ7r8TqpGaVqm09xeISs1DFCF3REN/SLftIV3T9YK05rJF6aPFttrQhqA/uDy3f/Vbk8K2z9VT3qWWEDM6lXyd6DlEluYbf1jd2Dm+XZpZF4lH7QNfv/Tpd0zjfwGrf24aJY+vaIH4u98Itxg/50QX8YrI7njHxucnEyO/+x06peDGEYY9yPaczjE4oocf09HOMUZ9p7raiVtc/tVK2ro3mLf0KzfgMt4J6c
(
Pn
i=1
Xi)/n
،ٝ؟ٝـٕה
㺘זꟼ⤘
3FDBQ寸㹀啾ה剑鵚ꦄ岀
Journal of Machine Learning Research, 9, 2015-2033, 2008 The Annals of Statistics, 43(4), 1716-1741, 2015.
➙傈ך鑧겗䲿⣘
˖ 寸㹀啾㔐䌓ך⥋걾⼒䱿㹀٥#FOJHO0WFSUUJOH
噟 荈搫猰㷕דך堣唒㷕统ⵃ崞欽
דِ٦ؠה׃ג寸㹀加،ٝ؟ٝـٕ
הصُ٦ٕٓطحز
⢪גְג⳿⠓植韋ה㉏겗ך稱➜
˖ 㢳㢌ꆀ加ה3F-6طحزךⰅ⸂瑞ⴓⶴ
3FDBQ
#SFJNBOךאך侄鎮
Breiman L, Statistical Modeling: The Two Cultures. Statist. Sci. 16(3): 199-231, 2001.
https://doi.org/10.1214/ss/1009213726
Rashomon
Occam
Bellman
葺ְ堣唒㷕统ٌرٕך㢳ꅾ䚍 ꬊ♧䠐䚍
✮庠礵䏝הءٝفׁٕ 鍑ꅸ䚍
ך؝ٝؿؙٔز
넝如⯋䚍כンְַ牜状ַ
3BTIPNPO&GGFDU
Breiman L, Statistical Modeling: The Two Cultures. Statist. Sci. 16(3): 199-231, 2001.
https://doi.org/10.1214/ss/1009213726
• "What I call the Rashomon Effect is that there is often a multitude of different descriptions
[equations f︎(x)] in a class of functions giving about the same minimum error rate. The most
easily understood example is subset selection in linear regression."
• "The Rashomon Effect also occurs with decision trees and neural nets."
• "This effect is closely connected to what I call instability (Breiman,1996a) that occurs when
there are many different models crowded together that have about the same training or test
set error."
Rashomon Effect: 葺ְ堣唒㷕统ٌرٕך㢳ꅾ䚍 ꬊ♧䠐䚍
堣唒㷕统؝ٝلדכ♧אךر٦ةإحزח㼎׃ג㢳圫זٌرָٕ䲿⳿ׁկ
✮庠礵䏝כ♳⡘כ׀朐䡾חז㹋欽♳כקרず瘝ח葺ְٌرٕהזׇկ
⢽
3BTIPNPO&GGFDUה6OEFSTQFDJGJDBUJPO
穠㽷ծ鎮箺ر٦ة 嗚鏾ر٦ة
ذأزر٦ة剣ꣲֽוչ넝如⯋瑞պדכ
溪ךꟼ侧ָ֮ה׃ג鋅劤侧♶駈ד暴㹀 TQFDJGZ
׃ֹזְַ
׃؟ٝفٕ侧ָ⼧ⴓז植➿涸זꬊ简䕎䩛岀זְְו鼅ד0,זכ׆
Kernel Ridge (RBF)
Neural Network (MLP)
Gradient Boosted Trees
SVR (RBF) Gaussian Process (RBF)
Random Forest
Nearest Neighbors Decision Tree
3BTIPNPO&GGFDUה6OEFSTQFDJGJDBUJPO
穠㽷ծ鎮箺ر٦ة 嗚鏾ر٦ة
ذأزر٦ة剣ꣲֽוչ넝如⯋瑞պדכ
溪ךꟼ侧ָ֮ה׃ג鋅劤侧♶駈ד暴㹀 TQFDJGZ
׃ֹזְַ
6OEFSTQFDJFEז朐屣ך㜥さծ欽ְ䩛岀װع؎ػ٦ػًٓةח״גְע殯ז穠卓ח
Kernel Ridge (RBF)
Neural Network (MLP)
Gradient Boosted Trees
SVR (RBF) Gaussian Process (RBF)
Random Forest
Nearest Neighbors Decision Tree
https://arxiv.org/abs/2011.03395
https://ai.googleblog.com/2021/10/
how-underspecification-presents.html
"While ML models are validated on held-out data, this validation is often insufficient to
guarantee that the models will have well-defined behavior when they are used in a new setting. "
6OEFSTQFDJGJDBUJPOכؽحؚر٦ة✲⢽ד饯ֿגְ
չ葺ְ侄䌌ٓكָٕאֽ㣐鋉垷ر٦ةך㹋⢽דպ饯ֿגְךַ
罋ְִ挿
Kernel Ridge (RBF)
Neural Network (MLP)
Gradient Boosted Trees
SVR (RBF) Gaussian Process (RBF)
Random Forest
Nearest Neighbors Decision Tree
չ寸㹀加،ٝ؟ٝـٕדכ㔐䌓刼简תד㔐䌓⦼ָעװְׅպכوؤְ暴䚍ַ
̔ההך؟ٝفٕ⦼ָ溪ך⫘ぢַٓٝتي㢌⹛׃גְךַֿך玎䏝✮庠⦼ָ䮶
խךכ鷞ח⨳Ⰻדכչ✮庠ⴓ侔պ鎘皾׃ג➰♷ׅל׃㹋欽欽鷿ד(PPEזכ׆
罋ְִ挿Ύ
չ寸㹀加כ0WFSUUJOH׃װְׅպכوؤְ暴䚍ַ
̔،ٝ؟ٝـٕ㷕统פך⚺⹛堣חזגְկ׃ծֿךչ0WFSUUJOHպכ䗳׆׃剣㹱הכ
鎉ִזְ #FOJHOPWFSUUJOH
կظ؎ؤ֮✲⢽ד鎮箺铎䊴דזח䕵ח甧א
Kernel Ridge (RBF)
Neural Network (MLP)
Gradient Boosted Trees
SVR (RBF) Gaussian Process (RBF)
Random Forest
Nearest Neighbors Decision Tree
Benignʁ
Benignʁ Benignʁ
Malignant Malignant
罋ְִ挿寸㹀啾㔐䌓ך✮庠ⴓ侔 ⥋걾⼒
ך䱿㹀
㔐䌓㹋ꥷח䠐䙼寸㹀ח崞欽ׅꥷחכծ✮庠⦼ֽדזֻך⥋걾䏝 ♶然㹋䚍
ך䞔㜠ָהגꅾ銲
"ֿך㉀ㅷך㡰♳־✮庠⦼כ p
דׅ
#ֿך㉀ㅷך㡰♳־✮庠⦼כ p
דׅ
Ԩ ✮庠⦼ךⴓ侔ִׁ皾⳿דֹל 姻鋉鵚⡂ד
⥋걾⼒װ鷵如㹋꿀鎘歗ח崞欽ׅ
劍䖉⦼何㊣ꆀ &YQFDUFE*NQSPWFNFOU
זוךꆀ鎘皾דֹ
⥋걾⼒
罋ְִ挿寸㹀啾㔐䌓ך✮庠ⴓ侔 3BOEPN'PSFTU㘗
Ԩ 㔐䌓加⽃⡤ד荈搫ז✮庠ⴓ侔䭯א
Ը✮庠挿ָ衅걄㚖ח֮鎮箺؟ٝفٕךZךչⴓ侔պ
Ԩ 3BOEPN'PSFTU㘗ך㜥さכ寸㹀加ָ㛇劤涸ח杝甧זךדծぐղך㔐䌓加ך✮庠
ⴓ侔窟さ׃ג،ٝ؟ٝـٕך✮庠ⴓ侔皾⳿
Ⰻⴓ侔ך岀 -BXPGUPUBMWBSJBODF
Ⰻⴓ侔ؚٕ٦فⰻⴓ侔ؚٕ٦ف㢩ⴓ侔
Hutter et al, Algorithm Runtime Prediction: Methods & Evaluation (2014) https://arxiv.org/abs/1211.0906
罋ְִ挿寸㹀啾㔐䌓ך✮庠ⴓ侔 3BOEPN'PSFTU㘗
https://scikit-optimize.github.io/stable/_modules/skopt/learning/forest.html
def _return_std(X, trees, predictions, min_variance):
# This derives std(y | x) as described in 4.3.2 of arXiv:1211.0906
std = np.zeros(len(X))
for tree in trees:
var_tree = tree.tree_.impurity[tree.apply(X)]
# This rounding off is done in accordance with the
# adjustment done in section 4.3.3
# of http://arxiv.org/pdf/1211.0906v2.pdf to account
# for cases such as leaves with 1 sample in which there
# is zero variance.
var_tree[var_tree < min_variance] = min_variance
mean_tree = tree.predict(X)
std += var_tree + mean_tree ** 2
std /= len(trees)
std -= predictions ** 2.0
std[std < 0.0] = 0.0
std = std ** 0.5
return std
Hutter et al, Algorithm Runtime Prediction: Methods & Evaluation (2014) https://arxiv.org/abs/1211.0906
罋ְִ挿寸㹀啾㔐䌓ך✮庠ⴓ侔 ⥋걾⼒
ך䱿㹀
⥋걾⼒
RandomForestRegressor
(n_estimators=10, max_leaf_nodes=12)
ExtraTreesRegressor
(n_estimators=10, max_leaf_nodes=32)
ֿהずׄ倯岀ךתת(SBEJFOU#PPTUJOHך寸㹀加꧊さח黝欽ׅה˘
GradientBoostingRegressor
(n_estimators=30, learning_rate=0.1)
זַقٝ
ת(SBEJFOU#PPTUJOHכ㷕统桦ח״ꅾ➰ֹ
䎂㖱זךדꅾך罋䣁䗳銲
罋ְִ挿寸㹀啾㔐䌓ך✮庠ⴓ侔 (SBEJFOU#PPTUJOH㘗
Ԩ (SBEJFOU#PPTUJOHדכ䴦㣟ꟼ侧荈歋ח㢌ִ挿ח滠湡׃ג鸐䌢כⴓ⡘挿
㔐䌓 2VBOUJMF3FHSFTTJPO
ד✮庠ⴓ侔湱䔲ꆀ皾⳿ׅկ
Ԩ 姻鋉ⴓ䋒ׅر٦ةך㜥さծ垥彊⨉䊴ח湱䔲ׅⴓ⡘挿כ ♴⩎
ה ♳
⩎
חזךדծֿךⴓ⡘挿ח㼎׃ג㔐䌓ׅל垥彊⨉䊴ך♳⩎ה♴⩎ך⦼ָ䖤
Ԩ ⴓ⡘挿㔐䌓 2VBOUJMF3FHSFTTJPO
GradientBoostingRegressor(loss='quantile', alpha=α)
ر٦ةך溪⚥ 䎂㖱⦼
ד
כזֻ暴㹀ך醣 Rⴓ⡘挿
湫䱸杆㔐䌓
罋ְִ挿寸㹀啾㔐䌓ך✮庠ⴓ侔 (SBEJFOU#PPTUJOH㘗
Ԩ 䴦㣟ꟼ侧ⴓ⡘挿ٗأ 2VBOUJMFMPTT
ח㢌刿׃ĥ
ךⴓ⡘挿R
✮庠ׅ㔐䌓遤ֲկ
GradientBoostingRegressor(
(n_estimators=30, learning_rate=0.1)
LGBMRegressor (n_estimators=30, learning_rate=0.1,
max_leaf_nodes=8, min_child_samples=5)
Ԩ ⴓ⡘挿ָ䎂㖱⦼ծ։ךָ垥彊⨉䊴ה鵚⡂דֹךדծ⥋걾⼒װ
劍䖉⦼何㊣ꆀזו皾⳿דֹ
aka "Pinball loss"
剑ⴱך⢽
Rando Forest ExtraTrees (w/o bootstrap)
ExtraTrees (w/ bootstrap)
Gradient Boosted Trees
Rando Forest ExtraTrees (w/o bootstrap)
ExtraTrees (w/ bootstrap)
Gradient Boosted Trees
זח˘
ֿכ⳿勻ג葺ְךַ
ֿזהַֻ˘
ֿכ➂䊨ر٦ةד姻鍑ָ֮ر٦ة
זךד
ך䠐דכֿךקֲָ葺ְהכ鎉ִ
ֿד荈搫ז孡ׅ˘
崞䚍⻉ꟼ侧ֽ
3F-6̔5BOIח㢌刿
זח̕ך״ֲז锷㣐ְח֮˘
ֿכ⳿勻ג葺ְךַ
ֿזהַֻ˘ 锷ה׃גծ窟鎘㷕涸חכ؟ٝفٕ♶駈ד
֮6OEFSTQFDJFEז朐屣ד⡦ַ䒉鏣涸ז陽锷
כ〳腉זךַ
堣唒㷕统ٌرٕךEFQMPZ䖓ח⳿⠓ֲر٦ة ذأ
زر٦ة
כ搀ꣲծ鎮箺ر٦ة٥嗚鏾ر٦ةכ剣
ꣲծהְֲ搀椚鏣㹀דכ穠㽷չٌرٕך䌓秛غ
؎،أ JOEVDUJWFCJBT
պָ湡ך㉏겗חوحث
ַָֽׅꅾ銲
ֿך䠐דٌرٕך䮙⹛ך帾ְ椚鍑ה
㹋欽خ٦ٕה㹋㉏겗ח鼧⯋ׅ
㹋騧ךJUFSBUJPOכ㣐✲
ك؎ؤדִִװ˘הְֲ䠐鋅כ֮ה䙼ֲֽו˘
Gaussian Process Gaussian Process
؟ٝفָֻׁٕ֮ה
✮庠ⴓ侔קרחזָ
⽃ז3#'װ.BUFSOדכ
搀椚
ְ׆חׇ״⡦ַךꬊ简䕎ٌرؚٔٝכ䗳銲կ⢽ִלծؕ٦طٕ岀ד遤ֲؖؐأ麓玎
㔐䌓ד葺ְ䠬ׄחׅךכַז耵➂涸זؕ٦طٕإָٔؗ銲✮䠬˘
猘䠬׃ؕ٦طٕ岀דֲתֻ⳿勻זֽֿ植㜥ד寸㹀加،ٝ؟ٝـָٕꅾ㹇ׁ
ֿהזְךדכהְֲ孡ׅկ植➿涸ر٦ةؕ٦طٕ岀דֲתֻ䪔ֲחכ耵➂䪮ָ䗳銲
/FVSBM/FUXPSLT .-1
⥋걾⼒䱿㹀
MLP
(Quantile Regression)
MLP
(Quantile Regression)
MLP
(MC Dropout)
MLP
(MC Dropout)
arch:
(Linear(1, 100), ReLU,
Dropout(p),
Linear(100, 100), ReLU,
Dropout(p),
Linear(100, 1))
p=0.25
#sampling=30
p=0.25
#sampling=30
p=0.0
p=0.0
׳ה㢌ז䠬ׄ
%SPQPVUךְׇד
畭ֿך⦼כוֲ
׃גⴓ侔㣐ֹח
MLP
(30 Ensemble)
MLP
(30 Ensemble)
p=0.0
p=0.0
MLP
(30 Ensemble)
MLP
(30 Ensemble)
p=0.25
p=0.25
%SPQPVUךְׇד
畭ֿך⦼כוֲ
׃גⴓ侔㣐ֹח
/FVSBM/FUXPSLT .-1
⥋걾⼒䱿㹀
arch:
(Linear(1, 100), ReLU,
Dropout(p),
Linear(100, 100), ReLU,
Dropout(p),
Linear(100, 1))
.-1כׯה⢪ִל殯圫חػٙؿٕ㤴ָ帾ְ˘
• Tolstikhin IO, Houlsby N, Kolesnikov A, Beyer L, Zhai X, Unterthiner T, et al.
MLP-Mixer: An all-MLP Architecture for Vision. NeurIPS 2021.
• Kadra A, Lindauer M, Hutter F, Grabocka J.
Well-Tuned Simple Nets Excel on Tabular Datasets. NeurIPS 2021.
• Liu H, Dai Z, So D, Le Q.
Pay Attention to MLPs. NeurIPS 2021.
• Melas-Kyriazi L.
Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly
Well on ImageNet. 2021. http://arxiv.org/abs/2105.02723
ׯה׃ر٦ةד㷕统黝ⴖח؝ٝزٗ٦ׁٕגְל$//5SBOTGPSNFS
"UUFOUJPOׅ銲זְַ˘ .-1ֲתֻ⢪ִל״ְֽזךַ
罋ְִ挿Ύ
չ寸㹀加כ0WFSUUJOH׃װְׅպכوؤְ暴䚍ַ
̔،ٝ؟ٝـٕ《⚺⹛堣חזגְկ׃ծֿךչ0WFSUUJOHպכ䗳׆׃剣㹱הכ
鎉ִזְ #FOJHOPWFSUUJOH
կظ؎ؤ֮✲⢽ד鎮箺铎䊴דזח䕵ח甧א
Kernel Ridge (RBF)
Neural Network (MLP)
Gradient Boosted Trees
SVR (RBF) Gaussian Process (RBF)
Random Forest
Nearest Neighbors Decision Tree
Benignʁ
Benignʁ Benignʁ
Malignant Malignant
PolyReg(1)
RMSE 0.299
PolyReg(3)
RMSE 0.28
PolyReg(5)
RMSE 0.225
PolyReg(7)
RMSE 0.113
PolyReg(10)
RMSE 0.0189
PolyReg(15)
RMSE 0.00737
PolyReg(20)
RMSE 0.000
PolyReg(30)
RMSE 0.000
ExtraTrees (no bootstrap)
RMSE 0.000
ExtraTrees (bootstrap)
RMSE 0.0121
Random Forest
RMSE 0.012
LGBM
RMSE 0.0508
95%-CI 95%-CI 95%-CI 95%-CI
Problematic overfitting by polynomial regression of order k
clearly overfitted but harmless (still informative)
also we can assess
the uncertainty
#FOJHO0WFSGJUUJOHظ؎ؤ֮ر٦ةד鎮箺铎䊴ד搀㹱
&YUSB5SFFTװ(SBEJFOU#PPTUFE5SFFTכ鎮箺铎䊴כ⡭酔
Ⰻֻٓٝتيזٓكٕד鎮箺铎䊴麦䧭דֹ
ExtraTrees (no bootstrap) ExtraTrees (no bootstrap) ExtraTrees (no bootstrap) ExtraTrees (no bootstrap)
Gradient Boosted Trees Gradient Boosted Trees Gradient Boosted Trees Gradient Boosted Trees
זח剑鵚ꦄ岀װ寸㹀加䭯א䚍颵דה䔲
Nearest Neighbor (k=1) Nearest Neighbor (k=1) Nearest Neighbor (k=1) Nearest Neighbor (k=1)
Decision Tree Decision Tree Decision Tree Decision Tree
Ⰻֻٓٝتيזٓكٕד鎮箺铎䊴麦䧭דֹ ֿך鏣㹀דכ(#%5
//
%5כקרずׄ
3BOEPN'PSFTUװ剑鵚ꦄ岀כֿך䚍颵䭯זְ
Random Forest Random Forest Random Forest Random Forest
Nearest Neighbor (k=3) Nearest Neighbor (k=3) Nearest Neighbor (k=3) Nearest Neighbor (k=3)
#PPUTUSBQ⠵ֲ3BOEPN'PSFTUװ&YUSB5SFFTծL// L
זוכPWFSUדֹזְ
帾㾴㷕统ٌرָֿٕך䚍颵䭯אֿהכ岣湡ׁגְ
"our experiments establish that state-of-the-art convolutional networks for image classification trained with
stochastic gradient methods easily fit a random labeling of the training data. This phenomenon is qualitatively
unaffected by explicit regularization and occurs even if we replace the true images by completely unstructured
random noise. "
Berner J, Grohs P, Kutyniok G, Petersen P.
The Modern Mathematics of Deep Learning. arXiv [cs.LG]. 2021. http://arxiv.org/abs/2105.04026
Zhang C, Bengio S, Hardt M, Recht B, Vinyals O.
Understanding Deep Learning (Still) Requires Rethinking Generalization. Commun ACM. 2021;64: 107–115.
#FOJHO0WFSGJUUJOH
Berner J, Grohs P, Kutyniok G, Petersen P.
The Modern Mathematics of Deep Learning. arXiv [cs.LG]. 2021. http://arxiv.org/abs/2105.04026
穗꿀涸✲㹋ה׃גծ㹋ꥷך帾㾴㷕统ך植㜥דכ侄䌌ٓكٕחظ؎ؤֲָָ֮זֲַָծ
ذأز铎䊴ָ㼭ְׁٌرٕכչ鎮箺铎䊴㼭ְׁ קרئٗ铎䊴
պז㜥さָהג㢳ְկ
PS%PVCMF%FTDFOU
*OUFSQPMBUJPO
1FSGFDU'JUUJOH
BOE%PVCMF%FTDFOU
PNAS (2020) Ann. Statist. (2020)
NeurIPS (2018) arXiv (2019)
#FOJHO0WFSGJUUJOH 猘䠬
罋
➙屭⯇耆
帾㾴㷕统ך⾱椚鍑匿害⻉铎䊴ך⩎ַ傈劤窟鎘㷕⠓钞
#FOJHO0WFSGJUUJOH 猘䠬
˖ صُ٦ٕٓطحزװ寸㹀加דכչ⡚如⯋דպظ؎ؤ֮ر٦ةד鎮箺铎䊴קרך㜥さָ
剑ذأز铎䊴㼰זְ㹋⢽ח穠圓⳿⠓ֲךדծず颵ד䪔ג葺ְךַכ㣐ְח毟㉏կ
罋
➙屭⯇耆
帾㾴㷕统ך⾱椚鍑匿害⻉铎䊴ך⩎ַ傈劤窟鎘㷕⠓钞
#FOJHO0WFSGJUUJOH 猘䠬
˖ صُ٦ٕٓطحزװ寸㹀加דכչ⡚如⯋דպظ؎ؤ֮ر٦ةד鎮箺铎䊴קרך㜥さָ
剑ذأز铎䊴㼰זְ㹋⢽ח穠圓⳿⠓ֲךדծず颵ד䪔ג葺ְךַכ㣐ְח毟㉏կ
˖ הְֲַչ#FOJHO0WFSUUJOHպչ%PVCMFEFTDFOUպזךַכַז毟㉏կ
%PVCMFEFTDFOUדכ♧㔐ذأز铎䊴ָ䝤ֻזغٝفָֿ֮החזָծ"EBCPPTUךⴱ劍
陽锷瘗걧ח鎮箺铎䊴ך䖓 䝤ֻז䴎䨱׃כ暴ח搀׃ח
ذأز铎䊴ָ幾אבֽ✲
⢽כ葿ղ㜠デ֮կ
罋
➙屭⯇耆
帾㾴㷕统ך⾱椚鍑匿害⻉铎䊴ך⩎ַ傈劤窟鎘㷕⠓钞
#FOJHO0WFSGJUUJOH 猘䠬
˖ صُ٦ٕٓطحزװ寸㹀加דכչ⡚如⯋דպظ؎ؤ֮ر٦ةד鎮箺铎䊴קרך㜥さָ
剑ذأز铎䊴㼰זְ㹋⢽ח穠圓⳿⠓ֲךדծず颵ד䪔ג葺ְךַכ㣐ְח毟㉏կ
˖ הְֲַչ#FOJHO0WFSUUJOHպչ%PVCMFEFTDFOUպזךַכַז毟㉏կ
%PVCMFEFTDFOUדכ♧㔐ذأز铎䊴ָ䝤ֻזغٝفָֿ֮החזָծ"EBCPPTUךⴱ劍
陽锷瘗걧ח鎮箺铎䊴ך䖓 䝤ֻז䴎䨱׃כ暴ח搀׃ח
ذأز铎䊴ָ幾אבֽ✲
⢽כ葿ղ㜠デ֮կ
˖ -JOFBS3FHSFTTJPO 3JEHFMFTT-FBTUTRVBSFT
ד饯ֿךכ؟ٝفٕ侧״㣐ְֹ넝如⯋ד
כⰋ挿鸐ꟼ侧ָ ֻׁ
䒷ַֽկ鍑♧䠐חׅךחծ#BSUMFUU
ד
)BTUJF
דOPSN剑㼭鍑 .1♧菙鷞鍑
⟎㹀׃גְָPWFSQBSBNFUSJ[F 넝如⯋㼗
䕦
׃ג♧菙鷞ד简䕎㔐䌓ׅל0,הכ䙼ִזְ DG&YUSFNF-FBSOJOH.BDIJOF &-.
3FTFSWPJS$PNQVUJOH
կ׃չⰋ挿鸐ꟼ侧ָ䒷ֽׯֲպ䚍颵ךקֲָ劤颵涸
罋
➙屭⯇耆
帾㾴㷕统ך⾱椚鍑匿害⻉铎䊴ך⩎ַ傈劤窟鎘㷕⠓钞
剣㹱זPWFSGJUUJOHⱄ罋
PolyReg(10)
Train RMSE 0.0189
PolyReg(15)
Train RMSE 0.00737
KernelRidge RBF(γ=1)
Train RMSE 0.103
KernelRidge RBF(γ=10)
Train RMSE 0.0139
KernelRidge RBF(γ=100)
Train RMSE 0.00726
KernelRidge RBF(γ=1000)
Train RMSE 0.00726
ֿֿחさׇ״ֲהׅה
زٖ٦سؔؿדֿךפח
מוְ䕦갟ָדג׃תֲ
ؿ؍حذ؍ָؚٝչMPDBMպׄׯזְ
ؿ؍حذ؍ؚٝכչMPDBMպֽוぐ挿ך鵚⩸כׅץגずׄأ؛٦ٕד䪔ג׃תֲ
寸㹀加ךGJUUJOH 衝侧㔿㹀דPWFSGJUדֹ
ExtraTrees (#trees=1, #leaves=8,
bootstrap=off), Train RMSE 0.0189
ExtraTrees (#trees=10, #leaves=8,
bootstrap=off), Train RMSE 0.0274
ExtraTrees (#trees=102, #leaves=8,
bootstrap=off), Train RMSE 0.0279
ExtraTrees (#trees=103, #leaves=8,
bootstrap=off), Train RMSE 0.0243
GBDT w/ 1 ExtraTree (#leaves=8)
Train RMSE 0.29
GBDT w/ 10 ExtraTree (#leaves=8)
Train RMSE 0.17
GBDT w/ 102, ExtraTree (#leaves=8)
Train RMSE 0.00597
GBDT w/ 103, ExtraTree (#leaves=8)
Train RMSE 0.000997
/PUF(#%5X&YUSB5SFFTכTLMFBSOח(#
遤ֽ剅ֹ䳔ִל知⽃ח鑐ׇ
寸㹀加ךGJUUJOH 3'WT&5
3''
Random Forest (#trees=100)
Train RMSE 0.0109
Random Forest (#trees=1000)
Train RMSE 0.0274
ExtraTrees (#trees=100, bootstrap)
Train RMSE 0.0109
ExtraTrees (#trees=1000, bootstrap)
Train RMSE 0.0243
Random Forest (#trees=100)
Train RMSE 0.0112
Random Forest (#trees=100)
Train RMSE 0.0114
ExtraTrees (#trees=100, bootstrap)
Train RMSE 0.0099
ExtraTrees (#trees=1000, bootstrap)
Train RMSE 0.00977
With Random Fourier Features (100-dim Random Kitchen Sinks)
L3F-6.-1ךGJUUJOH
1-1-1 ReLU MLP
Train RMSE 0.287
1-5-1 ReLU MLP
Train RMSE 0.287
1-10-1 ReLU MLP
Train RMSE 0.0191
1-100-1 ReLU MLP
Train RMSE 0.00816
Train RMSE 0.0139 Train RMSE 0.0066 Train RMSE 0.0121 Train RMSE 0.0139
˟ⴱ劍⦼ח⣛㶷ׅלאֹכ穠圓֮
…
AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS0FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCuqOP6w==
k
Optimized With L-BFGS
arch:
(Linear(1, k),
ReLU,
Linear(k, 1))
L3F-6.-1ךGJUUJOH
1-1-1 ReLU MLP
Train RMSE 0.289
1-5-1 ReLU MLP
Train RMSE 0.297
1-10-1 ReLU MLP
Train RMSE 0.0237
1-100-1 ReLU MLP
Train RMSE 0.0243
ⴱ劍⦼ח⣛㶷ׅלאֹכ㼰זֻ
ַזך然桦ד؝ٖחז
…
AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS0FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCuqOP6w==
k
Optimized With Adam
arch:
(Linear(1, k),
ReLU,
Linear(k, 1))
LY
3F-6.-1ךGJUUJOH
k=1 ReLU MLP
Train RMSE 0.305
k=5 ReLU MLP
Train RMSE 0.303
k=10 ReLU MLP
Train RMSE 0.0131
k=100 ReLU MLP
Train RMSE 0.00979
Optimized With Adam
arch:
(Linear(1, k),
ReLU,
Linear(k, k),
ReLU,
Linear(k, 1))
x 9 ˟ⴱ劍⦼ח⣛㶷ׅלאֹכ穠圓֮
Train RMSE 0.0443 Train RMSE 0.0124 Train RMSE 0.0811 Train RMSE 0.00864
➙傈ך鑧겗䲿⣘
˖ 寸㹀啾㔐䌓ך⥋걾⼒䱿㹀٥#FOJHO0WFSUUJOH
噟 荈搫猰㷕דך堣唒㷕统ⵃ崞欽
דِ٦ؠה׃ג寸㹀加،ٝ؟ٝـٕ
הصُ٦ٕٓطحز
⢪גְג⳿⠓植韋ה㉏겗ך稱➜
˖ 㢳㢌ꆀ加ה3F-6طحزךⰅ⸂瑞ⴓⶴ
3F-6/FUXPSL
Daubechies, I., DeVore, R., Foucart, S. et al. Nonlinear Approximation and (Deep) ReLU Networks.
Constr Approx 55, 127–172 (2022). https://doi.org/10.1007/s00365-021-09548-z
Ingrid Daubechies Ronald DeVore
זחך،ٕؿ؋كحز갫ծ顑⟣衼罏כ%F7PSF
% ⽃㢌ꆀ
ך㉏겗ד鑫׃ֻ
鍑匿׃גְגⴓַװְׅ
3F-6/FUXPSL
Daubechies, I., DeVore, R., Foucart, S. et al. Nonlinear Approximation and (Deep) ReLU Networks.
Constr Approx 55, 127–172 (2022). https://doi.org/10.1007/s00365-021-09548-z
3F-6
頾⦼縧䳔
3F-6/FUXPSL
Daubechies, I., DeVore, R., Foucart, S. et al. Nonlinear Approximation and (Deep) ReLU Networks.
Constr Approx 55, 127–172 (2022). https://doi.org/10.1007/s00365-021-09548-z
˖ 3F-6/FUXPSLָ邌植ׅꟼ侧כչ$POUJOVPVT1JFDFXJTF-JOFBS $1X-
GVODUJPOպ
3F-6/FUXPSLWT寸㹀加٥寸㹀啾
˖ 3F-6/FUXPSLָ邌植ׅꟼ侧כչ$POUJOVPVT1JFDFXJTF-JOFBS $1X-
GVODUJPOպ
1-1-1 ReLU MLP
Train RMSE 0.289
1-5-1 ReLU MLP
Train RMSE 0.297
1-10-1 ReLU MLP
Train RMSE 0.0237
1-100-1 ReLU MLP
Train RMSE 0.0243
˖ 寸㹀加٥寸㹀啾 װ剑鵚ꦄ岀
ָ邌植ׅꟼ侧כչ1JFDFXJTF$POTUBOUGVODUJPOպ
Gradient Boosted Trees
Random Forest
Nearest Neighbors Decision Tree
3F-6/FUXPSL
˖ 3F-6/FUXPSLָ邌植ׅꟼ侧כչ$POUJOVPVT1JFDFXJTF-JOFBS $1X-
GVODUJPOպ
1-1-1 ReLU MLP
Train RMSE 0.289
1-5-1 ReLU MLP
Train RMSE 0.297
1-10-1 ReLU MLP
Train RMSE 0.0237
1-100-1 ReLU MLP
Train RMSE 0.0243
ExtraTrees (#trees=103, #leaves=8,
bootstrap=off), Train RMSE 0.0243
ExtraTrees (#trees=1000, bootstrap)
Train RMSE 0.0243
&YUSB5SFFT⼒ⴓ涸㹀侧זךָ
加侧㟓װ׃גְֻהꬊ䌢ח
莆帾ְ䮙⹛爙ׅ˘
ֿך䚍颵כ&YUSB5SFFTך⯋锷俑ד陽锷ׁגְ
Geurts, P., Ernst, D. & Wehenkel, L. Extremely randomized trees. Mach Learn 63, 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1
ְ׆חׇ״걄㚖׀הךMPDBMJUZָ椚鍑ך꒲חז
ر٦ة Decision
Tree
Random
Forest GBDT
Nearest
Neighbor
Logistic
Regression
SVM
Gaussian
Process
Neural
Network
1JFDFXJTFDPOTUBOU 1JFDFXJTFMJOFBS
3F-6/FUXPSLךⰅ⸂瑞ⴓⶴ罋ִ
NeurIPS 2019
ICML 2018
简䕎أفٓ؎ٝ 㢳㢌ꆀ،ؿ؍ٝأفٓ؎ٝ
"A large class of DNs can be written as a composition of max-affine spline operators (MASOs)"
%JTKPJOUז걄㚖ךQBSUJUJPOָ֮
ぐ걄㚖׀החꟼ侧 סאֲ㢳갪䒭
BQQMZֽׅוչ㞮歲ד鸬竲חז
״ֲחպזגְךָأفٓ؎ٝ
ך⚥דⱖ⫷ָչ如㹀侧갪պך
"OFأفٓ؎ٝ罋ִ
أفٓ؎ٝךؿ؍حذ؍ؚٝכ♧菙חכ
չ걄㚖׀הךⱖ⫷պהչ걄㚖ⴓⶴպךず儗剑黝⻉חזꬊ䌢חꨇ׃ְ
.BY"GGJOF4QMJOF ."4
ך⚥דⱖ⫷ָչ如㹀侧갪պך
"OFأفٓ؎ٝ罋ִ
.BY"OFأفٓ؎ٝדכ僇爙涸ח
չ걄㚖ⴓⶴպ罋ִ䗳銲ָזְ
"A large class of DNs can be written as a composition of max-affine spline operators (MASOs)"
%JTKPJOUז걄㚖ךQBSUJUJPOָ֮
ぐ걄㚖׀החꟼ侧 סאֲ㢳갪䒭
BQQMZֽׅוչ㞮歲ד鸬竲חז
״ֲחպזגְךָأفٓ؎ٝ
.BY"GGJOF4QMJOF ."4
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K6TOGRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqiY1dFZnisSRKlUMjTakmlgLR0mcuBEZBaIHouBF2gg/QgVOwAAFWqABBR04YhUksPErgwgETOSq0EXOQsTcfQrnEEBtC7MoZkjINvHfwFXZY3VcOzVtV63gKSoOC5URiJEXck8G5Jk8kFfy+WetrlvD8dLBWR5qqVkLXazkPv5VaThzOP1WjfXMoQ67rleG3k2XcW6hDPXts6tBLpmNddfJLXlD/zekT57wBnr7XbnL0GxvjB8ZveCLYYPE3+0YBYXNuLgdT2QS0dS+1yo/rMIabGA/diAFR5CGvNuHS+jBtRAUtoSksDdMFXyeZhl+hHD4BTIfkrs=
!1 AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmY1AJFkERLPMwD0hC2F3HOGRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUtI2WpdCCYqiGVZYlm6pMpwXOuErLpkUlTVZpSW7uO/ulNrVsZuhHvGPSmiY1dHbCFIkjVa4aGm1I9UQ9HCVx4kZkFIgeiIIXGSP8CFU4BgMUaIEGFHTgiFWQwMavAiIQMJGrQRc5CxFz9ymcQwC1LcyimCEh28R/A1cVj9Vx7dS0XbWCp6g4LFRGIEZeyD0ZkGfyQF7J55+1um4Nx0sHZ3mopWY9dLGS//hXpeHM4fRbNdYzhxPYcb0y9G66jHMLZahvn10N8qlcrLtObskb+r8hffKEN9Db78pdluZ6Y/zI6AVfDBsk/m7HKCgm4uJWPJlNRtN7Xqv8sAprsIH92IY0HEIGCm4fLqEH10JQ2BRSwu4wVfB5mmX4EcLBFzQ/krw=
!2 AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmTVAJFkERLPMwD0hC2F3HOGRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUtI2WpdCCYqiGVZYlm6pMpwXOuErLpkUlTVZpSW7uO/ulNrVsZuhHvGPSmiY1dHbCFIkjVa4aGm1I9UQ9HCVx4kZkFIgeiIIXGSP8CFU4BgMUaIEGFHTgiFWQwMavAiIQMJGrQRc5CxFz9ymcQwC1LcyimCEh28R/A1cVj9Vx7dS0XbWCp6g4LFRGIEZeyD0ZkGfyQF7J55+1um4Nx0sHZ3mopWY9dLGS//hXpeHM4fRbNdYzhxPYcb0y9G66jHMLZahvn10N8qlcrLtObskb+r8hffKEN9Db78pdluZ6Y/zI6AVfDBsk/m7HKChuxsWteDKbjKb3vFb5YRXWYAP7sQ1pOIQMFNw+XEIProWgkBBSwu4wVfB5mmX4EcLBFzZfkr0=
!3
˖ (MPCBMMZDPOWFYז⟣䠐ך"OFأفٓ؎ٝ
כ."4ד剅ֽ
˖ ."4כ䌢חQJFDFXJTFBOFַאHMPCBMMZ
DPOWFYזךדծוזػًٓةד䌢ח
DPOUJOVPVT
˖ 鷞ח⟣䠐ךQJFDFXJTFBOF
HMPCBMMZDPOWFY
ַאDPOUJOVPVTזꟼ侧כ."4ה׃ג剅ֽկ
AAAChnichVHLSsNAFD2Nr1ofrboR3BRLxVWZarUiCEU3LvuwD6ilJHFaQ9MkJGmhFn9AcGsXrhRciB/gB7jxB1z0E8RlBTcuvE0DosV6w2TOnLnnzpm5kqEqls1Y1yOMjU9MTnmnfTOzc/P+wMJiztIbpsyzsq7qZkESLa4qGs/aiq3ygmFysS6pPC/VDvr7+SY3LUXXjuyWwUt1saopFUUWbaIy6b3NciDEIsyJ4DCIuiAEN5J64BHHOIEOGQ3UwaHBJqxChEVfEVEwGMSV0CbOJKQ4+xzn8JG2QVmcMkRia/Sv0qroshqt+zUtRy3TKSoNk5RBhNkLu2c99swe2Cv7/LNW26nR99KiWRpouVH2XyxnPv5V1Wm2cfqtGunZRgU7jleFvBsO07+FPNA3zzq9zG463F5jt+yN/N+wLnuiG2jNd/kuxdPXI/xI5IVejBoU/d2OYZDbiES3I7FULJTYd1vlxQpWsU79iCOBQySRpfpVXOIKHcErRIQtIT5IFTyuZgk/Qkh8Ab91kFY=
R = 3
AAACjnichVHLSsNAFL2Nr1ofjboR3ARLRRDKREoVQSy66bIP+4BaShKndWheJGmxFn/AvbgQFAUX4gf4AW78ARf9BHFZwY0Lb9KAaLHeMJkzZ+65c2aubKrMdgjpBriR0bHxieBkaGp6ZjbMz80XbKNpKTSvGKphlWTJpirTad5hjkpLpkUlTVZpUW7sufvFFrVsZuj7TtukFU2q66zGFMlBqixVReFYWBPkqljlIyRGvBAGgeiDCPiRNvhHOIBDMECBJmhAQQcHsQoS2PiVQQQCJnIV6CBnIWLePoVTCKG2iVkUMyRkG/iv46rsszqu3Zq2p1bwFBWHhUoBouSF3JMeeSYP5JV8/lmr49VwvbRxlvtaalbDZ4u5j39VGs4OHH2rhnp2oAabnleG3k2PcW+h9PWtk4tebisb7ayQW/KG/m9IlzzhDfTWu3KXodnLIX5k9IIvhg0Sf7djEBTWY2IiFs/EI8ldv1VBWIJlWMV+bEASUpCGvPei53AF1xzPJbhtbqefygV8zQL8CC71BYbukso=
a1x + b1
AAACjnichVHLSsNAFL2Nr1ofjboR3ARLRRDKpJQqglh002Uf9gG1lCSOdWheJGmxFn/AvbgQFAUX4gf4AW78ARf9BHFZwY0Lb9KAaLHeMJkzZ+65c2aubKrMdgjpBriR0bHxieBkaGp6ZjbMz80XbaNpKbSgGKphlWXJpirTacFhjkrLpkUlTVZpSW7suvulFrVsZuh7TtukVU2q6+yQKZKDVEWqxYVjYU2Qa/EaHyEx4oUwCEQfRMCPjME/wj4cgAEKNEEDCjo4iFWQwMavAiIQMJGrQgc5CxHz9imcQgi1TcyimCEh28B/HVcVn9Vx7da0PbWCp6g4LFQKECUv5J70yDN5IK/k889aHa+G66WNs9zXUrMWPlvMf/yr0nB24OhbNdSzA4ew4Xll6N30GPcWSl/fOrno5Tdz0c4KuSVv6P+GdMkT3kBvvSt3WZq7HOJHRi/4Ytgg8Xc7BkExHhOTsUQ2EUnt+K0KwhIswyr2Yx1SkIYMFLwXPYcruOZ4Lsltcdv9VC7gaxbgR3DpL4s2ksw=
a2x + b2
AAACjnichVHLSsNAFL2Nr1ofjboR3ARLRRDKxJYqglh002Uf9gG1hCROa2heJGmxFn/AvbgQFAUX4gf4AW78ARf9BHFZwY0Lb9KAaLHeMJkzZ+65c2auZKqK7RDSDTAjo2PjE8HJ0NT0zGyYnZsv2kbTkmlBNlTDKkuiTVVFpwVHcVRaNi0qapJKS1Jjz90vtahlK4a+77RNWtXEuq7UFFl0kKqIQpw75tY4SYgLbITEiBfcIOB9EAE/Mgb7CAdwCAbI0AQNKOjgIFZBBBu/CvBAwESuCh3kLESKt0/hFEKobWIWxQwR2Qb+67iq+KyOa7em7allPEXFYaGSgyh5IfekR57JA3kln3/W6ng1XC9tnKW+lppC+Gwx//GvSsPZgaNv1VDPDtRg0/OqoHfTY9xbyH196+Sil9/KRTsr5Ja8of8b0iVPeAO99S7fZWnucogfCb3gi2GD+N/tGATF9RifjCWyiUhq129VEJZgGVaxHxuQgjRkoOC96DlcwTXDMklmm9nppzIBX7MAP4JJfwGPfpLO
a3x + b3
.BY"OFأفٓ؎ٝדכ僇爙涸ח
չ걄㚖ⴓⶴպ罋ִ䗳銲ָזְ
.BY"GGJOF4QMJOF0QFSBUPS ."40
AAAChHichVG7SgNBFD1ZNcZ31EawCQbFQsJE4wMLCdoINiYxUYgiu+skDm52l91JIAZ/QFvFwkrBQvwAP8DGH7DIJ4hlBBsLbzYLokG9y+ycOXPPnTNzNdsQrmSsHlA6OruC3aGe3r7+gcGh8PBIzrXKjs6zumVYzo6mutwQJs9KIQ2+YztcLWkG39aO1pr72xXuuMIyt2TV5nsltWiKgtBVSVRqYz8cZTHmRaQdxH0QhR+bVvgBuziABR1llMBhQhI2oMKlL484GGzi9lAjziEkvH2OE/SStkxZnDJUYo/oX6RV3mdNWjdrup5ap1MMGg4pI5hkz+yONdgTu2cv7OPXWjWvRtNLlWatpeX2/tDpWOb9X1WJZonDL9WfniUKWPK8CvJue0zzFnpLXzm+bGSW05O1KXbDXsn/NauzR7qBWXnTb1M8ffWHH4280ItRg+I/29EOcrOx+EIskUpEk6t+q0IYxwSmqR+LSGIdm8hSfY4znONCCSozypwy30pVAr5mFN9CWfkEdqOPyw==
K
AAACnHichVG7SgNBFL2urxgfiVooCBIMEaswkaBiJZpCEMEk5gGJhp11kgzZF7uToC75AX/AwkrFQtTaD7DxByzyCWIZwcbCm82CqKh3mZ0zZ+65c2YuNVVuC0JaPVJvX//AoG/IPzwyOhYIjk9kbaNuKSyjGKph5alsM5XrLCO4UFnetJisUZXlaG2js59rMMvmhr4rjky2p8kVnZe5IgukSsGpItWcw2aoyPVQUZNFlVIn1dxPlIJhEiVuhH6CmAfC4MWOEbyHIhyAAQrUQQMGOgjEKshg41eAGBAwkdsDBzkLEXf3GTTBj9o6ZjHMkJGt4b+Cq4LH6rju1LRdtYKnqDgsVIYgQp7INWmTR3JDnsn7r7Uct0bHyxHOtKtlZilwMp1++1el4Syg+qn607OAMqy4Xjl6N12mcwulq28cn7bTq6mIM08uyAv6Pyct8oA30BuvylWSpc7+8EPRC74YNij2vR0/QXYxGluKxpPx8Nq61yofzMAcLGA/lmENNmEHMq6vS7iFO2lWSkhb0nY3VerxNJPwJaTsB6B/mVE=
x 2 RD
."40
."40
,⦐ך."4⢪
0QFSBUPS
"A large class of DNs can be written as a composition of max-affine spline operators (MASOs)"
3F-6/FUXPSL."40ךさ䧭ꟼ侧
AAAC7nichVFNa9RQFD1NrdapOmPdCG6CQ2VmM7yUYotQKLpx4aJf0xaaNiSvLzOP5ovkzdAa8gf8AboQEQVB8Qf4A9y4c+WiP6F02YqbUr3JpJRarDck79zz7rk5710n8mSiGNsb0oavjFy9Nnq9Mnbj5q1q7fb4ShL2Yi7aPPTCeM2xE+HJQLSVVJ5Yi2Jh+44nVp3tJ/n+al/EiQyDZbUbiQ3f7gTSldxWRFk16Vrmclcou2E6frqTNfVZ3fSEqxoVdzNtPGtmVmqqvGCQZbrJZcx1cytUSYnzQuNcIWVZxYxlp6uap42tWp21WBH6RWCUoI4y5sPaF5jYQgiOHnwIBFCEPdhI6FmHAYaIuA2kxMWEZLEvkKFC2h5VCaqwid2mb4ey9ZINKM97JoWa0188emNS6phgP9gndsi+sc9snx3/s1da9Mi97NLqDLQisqov7i79+q/Kp1Whe6a61LOCi5nCqyTvUcHkp+ADff/5q8OlR4sT6QP2nh2Q/3dsj32lEwT9I/5hQSy+vsSPQ17oxmhAxt/juAhWJlvGw9bUwlR97nE5qlHcw300aB7TmMNTzKNN/b/jJ07wW4u0l9ob7e2gVBsqNXdwLrSPfwCSMriX
f⇥(x) =
⇣
f(L)
✓(L)
· · · f(1)
✓(1)
⌘
(x) AAACvHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQuYx4RkpJYkKtgqxOSkppXEVMeUgPhx1RqGmrU6MSn5JcU6cCEfzdqYosz0jJKY2ngBZQM9AzBQwGQYQhnKDFAQkC+wnSGGIYUhnyGZoZQhlyGVIY+hBMjOYUhkKAbCaAZDBgOGAqBYLEM1UKwIyMoEy6cy1DJwAfWWAlWlAlUkAkWzgWQ6kBcNFc0D8kFmFoN1JwNtyQHiIqBOBQZVg6sGKw0+G5wwWG3w0uAPTrOqwWaA3FIJpJMgelML4vm7JIK/E9SVC6RLGDIQuvC6uYQhjcEC7NZMoNsLwCIgXyRD9JdVTf8cbBWkWq1msMjgNdD9Cw1uGhwG+iCv7Evy0sDUoNl43JMEdAswxIARZIgeHZiMMCM9QzM9k0ATZQcnaFRxMEgzKDFoAOPDnMGBwYMhgCEUaP5chsMMZxjOMtkxpTBlM+VClDIxQvUIM6AApjIALx+l6g==
⇥ =
n
✓(1), . . . , ✓(L)
o
AAACm3ichVHLSsNAFD2N73dVEEEEsVTqpkxFVFyJbkRc9GFVsLUkcaqDaRKSaUFjf8AfcOFKwYXo3g9w4w+46CeISwU3LrxNA6LFekNyz5y55+bMXM02hCsZq4WUtvaOzq7unt6+/oHBofDwyLZrlR2dZ3XLsJxdTXW5IUyelUIafNd2uFrSDL6jHa/V93cq3HGFZW7JE5vnS+qhKYpCVyVRhfBYseDl5BGX6r4XE7PVaiMVwhEWZ35MNYNEACIIImmFH5DDASzoKKMEDhOSsAEVLj17SIDBJi4PjziHkPD3OaroJW2ZqjhVqMQe0/eQVnsBa9K63tP11Tr9xaDXIeUUouyZ3bI39sTu2Av7/LOX5/eoezmhrDW03C4MnY9nPv5VlShLHH2rWnqWKGLJ9yrIu+0z9VPoDX3l9OIts5yOejPsmr2S/ytWY490ArPyrt+kePqyhR+NvNCN0YASv8fRDLbn4omF+HxqPrKyGoyqGxOYRozmsYgVrCOJLPU/wzXucK9MKmvKhrLZKFVCgWYUP0LJfgF7g5jS
f(i)
✓(i)
• fully-connected
• convolution
• activation
• ReLU
• leaky ReLU
• absolute value
• pooling (max, average, channel, etc)
• recurrent
• skip connection
MASO
DNs are signal-dependent affine
transformations. The particular affine
mapping applied to x depends on which
parrtition of the spline it falls in Rd.
"A large class of DNs can be written as a composition of max-affine spline operators (MASOs)"
3F-6/FUXPSLךⰅ⸂瑞ⴓⶴ
3F-6/FUXPSLךⰅ⸂瑞ⴓⶴ
ReLU
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q==
y
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQgLEHzBxKwtXmrgwfoAf4MYfcMEnGJeYuHHhpTQxSsTbTOfMmXvunJkrm5pqO4z1fMLE5NT0jH82MDe/sBgMLS3nbaNhKTynGJphFWXJ5pqq85yjOhovmhaX6rLGC3LtYLBfaHLLVg39yGmZvFyXqrp6qiqSQ1S2XREroQiLMTfCo0D0QARepIzQI45xAgMKGqiDQ4dDWIMEm74SRDCYxJXRIc4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq0HNW1XrdApGg2LlGFE2Qu7Z332zB7YK/v8s1bHrTHw0qJZHmq5WQlerGY//lXVaXZw9q0a69nBKXZdryp5N11mcAtlqG+2u/3sXiba2WC37I3837Aee6Ib6M135S7NM9dj/MjkhV6MGiT+bscoyG/FxJ1YPB2PJPe9VvmxhnVsUj8SSOIQKeSofhWXuEJX8AsxYVtIDFMFn6dZwY8Qkl9Y9pCe
z1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtIQHiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVDFWxbMb6HmFqemZ2zjvvW1hcWvYHVlbzlt40ZZ6TdVU3i5JocVXReM5WbJUXDZOLDUnlBal+ONwvtLhpKbp2bLcNXm6INU2pKrJoE5XtVGKVQIhFmBPBcRB1QQhupPTAI05wCh0ymmiAQ4NNWIUIi74SomAwiCujS5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPa1qOWqZTVBomKYMIsxd2zwbsmT2wV/b5Z62uU2PopU2zNNJyo+K/WM9+/Ktq0Gzj7Fs10bONKvYcrwp5NxxmeAt5pG91eoPsfibc3WK37I3837A+e6IbaK13+S7NM9cT/EjkhV6MGhT93Y5xkI9ForuReDoeSh64rfJiA5vYpn4kkMQRUshR/RoucYWe4BUiwo6QGKUKHlezhh8hJL8AWxaQnw==
z2
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCKDohhXRDcuecgjQULaOmBDaZu2kADxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFQ7HOznm9y0FF07tlsGL9XFqqZUFFm0icq0y9vlQIhFmBPBURB1QQhuJPXAI05wCh0yGqiDQ4NNWIUIi74iomAwiCuhQ5xJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpUWzNNRyo+y/WM18/Kuq02zj7Fs11rONCvYcrwp5NxxmcAt5qG+2u/3Mfjrc2WC37I3837Aee6IbaM13+S7F09dj/EjkhV6MGhT93Y5RkNuKRHcjsVQslDhwW+XFGtaxSf2II4EjJJGl+lVc4gpdwStEhB0hPkwVPK5mBT9CSHwBXTaQoA==
z3
AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhgUIwV0caShzwSJGR3HXHDvrK7kADxB0xspbDSxML4AX6AjT9gwScYS0xsLLwsmxgl4t3Mzpkz99w5M1cyVcV2GOv5hInJqekZ/2xgbn5hMRhaWi7YRsOSeV42VMMqSaLNVUXneUdxVF4yLS5qksqLUv1gsF9scstWDP3IaZm8ook1XTlVZNEhKteuJqqhCIsxN8KjIO6BCLxIG6FHHOMEBmQ0oIFDh0NYhQibvjLiYDCJq6BDnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wg9q2q5aplNUGhYpw4iyF3bP+uyZPbBX9vlnrY5bY+ClRbM01HKzGrxYzX38q9JodnD2rRrr2cEpdl2vCnk3XWZwC3mob7a7/dxeNtrZYLfsjfzfsB57ohvozXf5LsOz12P8SOSFXowaFP/djlFQ2IrFd2KJTCKS2vda5cca1rFJ/UgihUOkkaf6NVziCl3BL8SEbSE5TBV8nmYFP0JIfQFfVpCh
z4
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCKDATGuiG5c8pBHgoS0dcCG0jZtIQHiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVDFWxbMb6HmFqemZ2zjvvW1hcWvYHVlbzlt40ZZ6TdVU3i5JocVXReM5WbJUXDZOLDUnlBal+ONwvtLhpKbp2bLcNXm6INU2pKrJoE5XtVOKVQIhFmBPBcRB1QQhupPTAI05wCh0ymmiAQ4NNWIUIi74SomAwiCujS5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPa1qOWqZTVBomKYMIsxd2zwbsmT2wV/b5Z62uU2PopU2zNNJyo+K/WM9+/Ktq0Gzj7Fs10bONKvYcrwp5NxxmeAt5pG91eoPsfibc3WK37I3837A+e6IbaK13+S7NM9cT/EjkhV6MGhT93Y5xkN+JRHcjsXQslDxwW+XFBjaxTf1IIIkjpJCj+jVc4go9wStEhLiQGKUKHlezhh8hJL8AYXaQog==
z5
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQgLEHzBxKwtXmrgwfoAf4MYfcMEnGJeYuHHhpTQxSsTbTOfMmXvunJkrm5pqO4z1fMLE5NT0jH82MDe/sBgMLS3nbaNhKTynGJphFWXJ5pqq85yjOhovmhaX6rLGC3LtYLBfaHLLVg39yGmZvFyXqrp6qiqSQ1S2XREroQiLMTfCo0D0QARepIzQI45xAgMKGqiDQ4dDWIMEm74SRDCYxJXRIc4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq0HNW1XrdApGg2LlGFE2Qu7Z332zB7YK/v8s1bHrTHw0qJZHmq5WQlerGY//lXVaXZw9q0a69nBKXZdryp5N11mcAtlqG+2u/3sXiba2WC37I3837Aee6Ib6M135S7NM9dj/MjkhV6MGiT+bscoyG/FxJ1YPB2PJPe9VvmxhnVsUj8SSOIQKeSofhWXuEJX8AsxYVtIDFMFn6dZwY8Qkl9Y9pCe
z1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtIQHiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVDFWxbMb6HmFqemZ2zjvvW1hcWvYHVlbzlt40ZZ6TdVU3i5JocVXReM5WbJUXDZOLDUnlBal+ONwvtLhpKbp2bLcNXm6INU2pKrJoE5XtVGKVQIhFmBPBcRB1QQhupPTAI05wCh0ymmiAQ4NNWIUIi74SomAwiCujS5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPa1qOWqZTVBomKYMIsxd2zwbsmT2wV/b5Z62uU2PopU2zNNJyo+K/WM9+/Ktq0Gzj7Fs10bONKvYcrwp5NxxmeAt5pG91eoPsfibc3WK37I3837A+e6IbaK13+S7NM9cT/EjkhV6MGhT93Y5xkI9ForuReDoeSh64rfJiA5vYpn4kkMQRUshR/RoucYWe4BUiwo6QGKUKHlezhh8hJL8AWxaQnw==
z2 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCKDohhXRDcuecgjQULaOmBDaZu2kADxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFQ7HOznm9y0FF07tlsGL9XFqqZUFFm0icq0y9vlQIhFmBPBURB1QQhuJPXAI05wCh0yGqiDQ4NNWIUIi74iomAwiCuhQ5xJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpUWzNNRyo+y/WM18/Kuq02zj7Fs11rONCvYcrwp5NxxmcAt5qG+2u/3Mfjrc2WC37I3837Aee6IbaM13+S7F09dj/EjkhV6MGhT93Y5RkNuKRHcjsVQslDhwW+XFGtaxSf2II4EjJJGl+lVc4gpdwStEhB0hPkwVPK5mBT9CSHwBXTaQoA==
z3 AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhgUIwV0caShzwSJGR3HXHDvrK7kADxB0xspbDSxML4AX6AjT9gwScYS0xsLLwsmxgl4t3Mzpkz99w5M1cyVcV2GOv5hInJqekZ/2xgbn5hMRhaWi7YRsOSeV42VMMqSaLNVUXneUdxVF4yLS5qksqLUv1gsF9scstWDP3IaZm8ook1XTlVZNEhKteuJqqhCIsxN8KjIO6BCLxIG6FHHOMEBmQ0oIFDh0NYhQibvjLiYDCJq6BDnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wg9q2q5aplNUGhYpw4iyF3bP+uyZPbBX9vlnrY5bY+ClRbM01HKzGrxYzX38q9JodnD2rRrr2cEpdl2vCnk3XWZwC3mob7a7/dxeNtrZYLfsjfzfsB57ohvozXf5LsOz12P8SOSFXowaFP/djlFQ2IrFd2KJTCKS2vda5cca1rFJ/UgihUOkkaf6NVziCl3BL8SEbSE5TBV8nmYFP0JIfQFfVpCh
z4 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCKDATGuiG5c8pBHgoS0dcCG0jZtIQHiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVDFWxbMb6HmFqemZ2zjvvW1hcWvYHVlbzlt40ZZ6TdVU3i5JocVXReM5WbJUXDZOLDUnlBal+ONwvtLhpKbp2bLcNXm6INU2pKrJoE5XtVOKVQIhFmBPBcRB1QQhupPTAI05wCh0ymmiAQ4NNWIUIi74SomAwiCujS5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPa1qOWqZTVBomKYMIsxd2zwbsmT2wV/b5Z62uU2PopU2zNNJyo+K/WM9+/Ktq0Gzj7Fs10bONKvYcrwp5NxxmeAt5pG91eoPsfibc3WK37I3837A+e6IbaK13+S7NM9cT/EjkhV6MGhT93Y5xkN+JRHcjsXQslDxwW+XFBjaxTf1IIIkjpJCj+jVc4go9wStEhLiQGKUKHlezhh8hJL8AYXaQog==
z5
ぐ걄㚖דכ♴鎸
穈さׇ
"OF㢌䳔ָ黝欽
ׁ
㞮歲ד鸬竲חז
3F-6/FUXPSLךⰅ⸂瑞ⴓⶴ
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQgLEHzBxKwtXmrgwfoAf4MYfcMEnGJeYuHHhpTQxSsTbTOfMmXvunJkrm5pqO4z1fMLE5NT0jH82MDe/sBgMLS3nbaNhKTynGJphFWXJ5pqq85yjOhovmhaX6rLGC3LtYLBfaHLLVg39yGmZvFyXqrp6qiqSQ1S2XREroQiLMTfCo0D0QARepIzQI45xAgMKGqiDQ4dDWIMEm74SRDCYxJXRIc4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq0HNW1XrdApGg2LlGFE2Qu7Z332zB7YK/v8s1bHrTHw0qJZHmq5WQlerGY//lXVaXZw9q0a69nBKXZdryp5N11mcAtlqG+2u/3sXiba2WC37I3837Aee6Ib6M135S7NM9dj/MjkhV6MGiT+bscoyG/FxJ1YPB2PJPe9VvmxhnVsUj8SSOIQKeSofhWXuEJX8AsxYVtIDFMFn6dZwY8Qkl9Y9pCe
z1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtIQHiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVDFWxbMb6HmFqemZ2zjvvW1hcWvYHVlbzlt40ZZ6TdVU3i5JocVXReM5WbJUXDZOLDUnlBal+ONwvtLhpKbp2bLcNXm6INU2pKrJoE5XtVGKVQIhFmBPBcRB1QQhupPTAI05wCh0ymmiAQ4NNWIUIi74SomAwiCujS5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPa1qOWqZTVBomKYMIsxd2zwbsmT2wV/b5Z62uU2PopU2zNNJyo+K/WM9+/Ktq0Gzj7Fs10bONKvYcrwp5NxxmeAt5pG91eoPsfibc3WK37I3837A+e6IbaK13+S7NM9cT/EjkhV6MGhT93Y5xkI9ForuReDoeSh64rfJiA5vYpn4kkMQRUshR/RoucYWe4BUiwo6QGKUKHlezhh8hJL8AWxaQnw==
z2 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCKDohhXRDcuecgjQULaOmBDaZu2kADxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFQ7HOznm9y0FF07tlsGL9XFqqZUFFm0icq0y9vlQIhFmBPBURB1QQhuJPXAI05wCh0yGqiDQ4NNWIUIi74iomAwiCuhQ5xJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpUWzNNRyo+y/WM18/Kuq02zj7Fs11rONCvYcrwp5NxxmcAt5qG+2u/3Mfjrc2WC37I3837Aee6IbaM13+S7F09dj/EjkhV6MGhT93Y5RkNuKRHcjsVQslDhwW+XFGtaxSf2II4EjJJGl+lVc4gpdwStEhB0hPkwVPK5mBT9CSHwBXTaQoA==
z3 AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhgUIwV0caShzwSJGR3HXHDvrK7kADxB0xspbDSxML4AX6AjT9gwScYS0xsLLwsmxgl4t3Mzpkz99w5M1cyVcV2GOv5hInJqekZ/2xgbn5hMRhaWi7YRsOSeV42VMMqSaLNVUXneUdxVF4yLS5qksqLUv1gsF9scstWDP3IaZm8ook1XTlVZNEhKteuJqqhCIsxN8KjIO6BCLxIG6FHHOMEBmQ0oIFDh0NYhQibvjLiYDCJq6BDnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wg9q2q5aplNUGhYpw4iyF3bP+uyZPbBX9vlnrY5bY+ClRbM01HKzGrxYzX38q9JodnD2rRrr2cEpdl2vCnk3XWZwC3mob7a7/dxeNtrZYLfsjfzfsB57ohvozXf5LsOz12P8SOSFXowaFP/djlFQ2IrFd2KJTCKS2vda5cca1rFJ/UgihUOkkaf6NVziCl3BL8SEbSE5TBV8nmYFP0JIfQFfVpCh
z4 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCKDATGuiG5c8pBHgoS0dcCG0jZtIQHiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVDFWxbMb6HmFqemZ2zjvvW1hcWvYHVlbzlt40ZZ6TdVU3i5JocVXReM5WbJUXDZOLDUnlBal+ONwvtLhpKbp2bLcNXm6INU2pKrJoE5XtVOKVQIhFmBPBcRB1QQhupPTAI05wCh0ymmiAQ4NNWIUIi74SomAwiCujS5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPa1qOWqZTVBomKYMIsxd2zwbsmT2wV/b5Z62uU2PopU2zNNJyo+K/WM9+/Ktq0Gzj7Fs10bONKvYcrwp5NxxmeAt5pG91eoPsfibc3WK37I3837A+e6IbaK13+S7NM9cT/EjkhV6MGhT93Y5xkN+JRHcjsXQslDxwW+XFBjaxTf1IIIkjpJCj+jVc4go9wStEhLiQGKUKHlezhh8hJL8AYXaQog==
z5
-12.43 15.48 2.04 2.05 -2.48
3F-6/FUXPSLךⰅ⸂瑞ⴓⶴ
3F-6/FUXPSLךⰅ⸂瑞ⴓⶴ
arch:
(Linear(2, 5),
ReLU,
Linear(5, 1))
ReLU
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q==
y
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA==
x1
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ==
x2
3F-6/FUXPSLךⰅ⸂瑞ⴓⶴ
Power diagram (PD)
aka Laguerre–Voronoi diagram
3F-6/FUXPSLךⰅ⸂瑞ⴓⶴ
㢳㾴חזꥷחכ걄㚖׀הח殯ז걄㚖ⴓⶴד稢ⴓׁגְֻ
3F-6/FUXPSLךⰅ⸂瑞ⴓⶴ
Balestriero, Randall. "Max-Affine Splines Insights Into Deep Learning." (2021) Diss., Rice University. https://hdl.handle.net/1911/110439.
1JFDFXJTF-JOFBSדչ4QMJOFպ 㞮歲ד鸬竲
הְֲֿהכ馄䎂ؙءٍؙءٍח׃朐䡾
/FVSBMOFUXPSLBTMPDBMJUZTFOTJUJWFIBTIJOH
寸㹀加ךⰅ⸂瑞ⴓⶴ
寸㹀加ךⰅ⸂瑞ⴓⶴ
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSTayFoyRO3IiMAtEDUfAibYQfoQInYIACLdCAgg4csQoS2PiVQQQCJnJV6CJnIWLuPoVzCKC2hVkUMyRkm/iv46rssTqunZq2q1bwFBWHhcoIxMgLuScD8kweyCv5/LNW163heOngLA+11KyFLlZyH/+qNJw5NL5VYz1zOIVd1ytD76bLOLdQhvr22dUgl8zGuuvklryh/xvSJ094A739rtxlaLY3xo+MXvDFsEHi73aMgsJmXNyOJzKJaGrfa5UfVmENNrAfO5CCI0hD3u3DJfTgWggKW0JS2BumCj5Psww/Qjj8Ak3rksg=
✓1
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGZiRVNvh8rijIXqiIrkThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOslho=
X2
✓1
yes no
寸㹀加ךⰅ⸂瑞ⴓⶴ
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSTayFoyRO3IiMAtEDUfAibYQfoQInYIACLdCAgg4csQoS2PiVQQQCJnJV6CJnIWLuPoVzCKC2hVkUMyRkm/iv46rssTqunZq2q1bwFBWHhcoIxMgLuScD8kweyCv5/LNW163heOngLA+11KyFLlZyH/+qNJw5NL5VYz1zOIVd1ytD76bLOLdQhvr22dUgl8zGuuvklryh/xvSJ094A739rtxlaLY3xo+MXvDFsEHi73aMgsJmXNyOJzKJaGrfa5UfVmENNrAfO5CCI0hD3u3DJfTgWggKW0JS2BumCj5Psww/Qjj8Ak3rksg=
✓1
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGZiRVNvh8rijIXqiIrkThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOslho=
X2
✓1
yes no
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRAooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4V4NLYTTWQS4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXtoWksD9KFTyuZhV+hHD0BVALksk=
✓2
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGRY0WT78eKosyFqswokThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOelho=
X1
✓2
yes no
Blue
寸㹀加ךⰅ⸂瑞ⴓⶴ
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSTayFoyRO3IiMAtEDUfAibYQfoQInYIACLdCAgg4csQoS2PiVQQQCJnJV6CJnIWLuPoVzCKC2hVkUMyRkm/iv46rssTqunZq2q1bwFBWHhcoIxMgLuScD8kweyCv5/LNW163heOngLA+11KyFLlZyH/+qNJw5NL5VYz1zOIVd1ytD76bLOLdQhvr22dUgl8zGuuvklryh/xvSJ094A739rtxlaLY3xo+MXvDFsEHi73aMgsJmXNyOJzKJaGrfa5UfVmENNrAfO5CCI0hD3u3DJfTgWggKW0JS2BumCj5Psww/Qjj8Ak3rksg=
✓1
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGZiRVNvh8rijIXqiIrkThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOslho=
X2
✓1
yes no
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRAooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4V4NLYTTWQS4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXtoWksD9KFTyuZhV+hHD0BVALksk=
✓2
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGRY0WT78eKosyFqswokThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOelho=
X1
✓2
yes no
Blue
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmQQooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaGwnmsgkwqkDt1VeWIcN2MJ+7EIKjiENeacPl9CHa8EvxIWksD9KFTyuZhV+hHD0BVIrkso=
✓3
AAAClnichVHLSsNAFD3GV3221Y3gplgUV2WiRcWFFEV0Wa3VgpWQxKmGpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxKWCGxfepAFRUW+YzJkz99w5M1dzTMMTjDVapNa29o7OSFd3T29ffzQWH1j37Kqr87xum7Zb0FSPm4bF88IQJi84Llcrmsk3tPKCv79R465n2NaaOHD4VkXdsYySoauCKCUWLyhyomjyvURR7HKhKpNKLMlSLIjETyCHIIkwsnbsDkVsw4aOKirgsCAIm1Dh0bcJGQwOcVuoE+cSMoJ9jiN0k7ZKWZwyVGLL9N+h1WbIWrT2a3qBWqdTTBouKRMYZY/shr2wB3bLntj7r7XqQQ3fywHNWlPLHSV6PJR7+1dVoVlg91P1p2eBEmYCrwZ5dwLGv4Xe1NcOT15ys6uj9TF2wZ7J/zlrsHu6gVV71S9X+OrpH3408kIvRg2Sv7fjJ1ifSMlTqfRKOpmZD1sVwTBGME79mEYGy8giT/X3cYYrXEtD0py0KC01U6WWUDOILyFlPwA1vpYb
X1
✓3
yes no
Red
寸㹀加ךⰅ⸂瑞ⴓⶴ
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSTayFoyRO3IiMAtEDUfAibYQfoQInYIACLdCAgg4csQoS2PiVQQQCJnJV6CJnIWLuPoVzCKC2hVkUMyRkm/iv46rssTqunZq2q1bwFBWHhcoIxMgLuScD8kweyCv5/LNW163heOngLA+11KyFLlZyH/+qNJw5NL5VYz1zOIVd1ytD76bLOLdQhvr22dUgl8zGuuvklryh/xvSJ094A739rtxlaLY3xo+MXvDFsEHi73aMgsJmXNyOJzKJaGrfa5UfVmENNrAfO5CCI0hD3u3DJfTgWggKW0JS2BumCj5Psww/Qjj8Ak3rksg=
✓1
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGZiRVNvh8rijIXqiIrkThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOslho=
X2
✓1
yes no
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRAooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4V4NLYTTWQS4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXtoWksD9KFTyuZhV+hHD0BVALksk=
✓2
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGRY0WT78eKosyFqswokThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOelho=
X1
✓2
yes no
Blue
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSLVELR0mcuBEZBaIHouBF2gg/QgVOwAAFWqABBR04YhUksPErgwgETOSq0EXOQsTcfQrnEEBtC7MoZkjINvFfx1XZY3VcOzVtV63gKSoOC5URiJEXck8G5Jk8kFfy+WetrlvD8dLBWR5qqVkLXazkPv5VaThzaHyrxnrmcAq7rleG3k2XcW6hDPXts6tBLpmNddfJLXlD/zekT57wBnr7XbnL0GxvjB8ZveCLYYPE3+0YBYXNuLgdT2QS0dS+1yo/rMIabGA/diAFR5CGvNuHS+jBtRAUtoSksDdMFXyeZhl+hHD4BVRLkss=
✓4
AAAClnichVHLSsNAFD2N7/qquim4KZaKqzItRcWFiCK6rNZqoZWQxGkbTJOYTCta/AF/wIW4UFARP8APcOMPuOgniMsKblx4mwZExXrDZM6cuefOmbmqbeiuYKwRkLq6e3r7+geCg0PDI6OhsfFt16o6Gs9qlmE5OVVxuaGbPCt0YfCc7XClohp8R91fae3v1Ljj6pa5JY5svltRSqZe1DVFECWHxnJyMlIw+EGkIMpcKHJKDkVZnHkR+Q0SPojCj7QVekABe7CgoYoKOEwIwgYUuPTlkQCDTdwu6sQ5hHRvn+MEQdJWKYtThkLsPv1LtMr7rEnrVk3XU2t0ikHDIWUEMfbM7liTPbF79sI+/qxV92q0vBzRrLa13JZHT8OZ939VFZoFyl+qjp4Fipj3vOrk3faY1i20tr52fNbMLGzG6tPsir2S/0vWYI90A7P2pl1v8M3zDn5U8kIvRg1K/GzHb7CdjCdm46mNVHRp2W9VPyYxhRnqxxyWsI40slT/EBe4wa0UlhalVWmtnSoFfM0EvoWU/gQ6DJYd
X2
✓4
yes no
Red
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmQQooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaGwnmsgkwqkDt1VeWIcN2MJ+7EIKjiENeacPl9CHa8EvxIWksD9KFTyuZhV+hHD0BVIrkso=
✓3
AAAClnichVHLSsNAFD3GV3221Y3gplgUV2WiRcWFFEV0Wa3VgpWQxKmGpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxKWCGxfepAFRUW+YzJkz99w5M1dzTMMTjDVapNa29o7OSFd3T29ffzQWH1j37Kqr87xum7Zb0FSPm4bF88IQJi84Llcrmsk3tPKCv79R465n2NaaOHD4VkXdsYySoauCKCUWLyhyomjyvURR7HKhKpNKLMlSLIjETyCHIIkwsnbsDkVsw4aOKirgsCAIm1Dh0bcJGQwOcVuoE+cSMoJ9jiN0k7ZKWZwyVGLL9N+h1WbIWrT2a3qBWqdTTBouKRMYZY/shr2wB3bLntj7r7XqQQ3fywHNWlPLHSV6PJR7+1dVoVlg91P1p2eBEmYCrwZ5dwLGv4Xe1NcOT15ys6uj9TF2wZ7J/zlrsHu6gVV71S9X+OrpH3408kIvRg2Sv7fjJ1ifSMlTqfRKOpmZD1sVwTBGME79mEYGy8giT/X3cYYrXEtD0py0KC01U6WWUDOILyFlPwA1vpYb
X1
✓3
yes no
Red
寸㹀加ךⰅ⸂瑞ⴓⶴ
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSTayFoyRO3IiMAtEDUfAibYQfoQInYIACLdCAgg4csQoS2PiVQQQCJnJV6CJnIWLuPoVzCKC2hVkUMyRkm/iv46rssTqunZq2q1bwFBWHhcoIxMgLuScD8kweyCv5/LNW163heOngLA+11KyFLlZyH/+qNJw5NL5VYz1zOIVd1ytD76bLOLdQhvr22dUgl8zGuuvklryh/xvSJ094A739rtxlaLY3xo+MXvDFsEHi73aMgsJmXNyOJzKJaGrfa5UfVmENNrAfO5CCI0hD3u3DJfTgWggKW0JS2BumCj5Psww/Qjj8Ak3rksg=
✓1
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGZiRVNvh8rijIXqiIrkThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOslho=
X2
✓1
yes no
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRAooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4V4NLYTTWQS4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXtoWksD9KFTyuZhV+hHD0BVALksk=
✓2
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGRY0WT78eKosyFqswokThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOelho=
X1
✓2
yes no
Blue
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSLVELR0mcuBEZBaIHouBF2gg/QgVOwAAFWqABBR04YhUksPErgwgETOSq0EXOQsTcfQrnEEBtC7MoZkjINvFfx1XZY3VcOzVtV63gKSoOC5URiJEXck8G5Jk8kFfy+WetrlvD8dLBWR5qqVkLXazkPv5VaThzaHyrxnrmcAq7rleG3k2XcW6hDPXts6tBLpmNddfJLXlD/zekT57wBnr7XbnL0GxvjB8ZveCLYYPE3+0YBYXNuLgdT2QS0dS+1yo/rMIabGA/diAFR5CGvNuHS+jBtRAUtoSksDdMFXyeZhl+hHD4BVRLkss=
✓4
AAAClnichVHLSsNAFD2N7/qquim4KZaKqzItRcWFiCK6rNZqoZWQxGkbTJOYTCta/AF/wIW4UFARP8APcOMPuOgniMsKblx4mwZExXrDZM6cuefOmbmqbeiuYKwRkLq6e3r7+geCg0PDI6OhsfFt16o6Gs9qlmE5OVVxuaGbPCt0YfCc7XClohp8R91fae3v1Ljj6pa5JY5svltRSqZe1DVFECWHxnJyMlIw+EGkIMpcKHJKDkVZnHkR+Q0SPojCj7QVekABe7CgoYoKOEwIwgYUuPTlkQCDTdwu6sQ5hHRvn+MEQdJWKYtThkLsPv1LtMr7rEnrVk3XU2t0ikHDIWUEMfbM7liTPbF79sI+/qxV92q0vBzRrLa13JZHT8OZ939VFZoFyl+qjp4Fipj3vOrk3faY1i20tr52fNbMLGzG6tPsir2S/0vWYI90A7P2pl1v8M3zDn5U8kIvRg1K/GzHb7CdjCdm46mNVHRp2W9VPyYxhRnqxxyWsI40slT/EBe4wa0UlhalVWmtnSoFfM0EvoWU/gQ6DJYd
X2
✓4
yes no
Red
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRQfIRYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixPS9wgTk1PTM95Z39y8fyEQXFzKW3rLlGlO1hXdLEqiRRWm0RxnXKFFw6SiKim0IDUP7f1Cm5oW07UT3jFoRRXrGqsxWeRIFcu8QblY3a4GwyRKnAiNgpgLwuBGSg8+QhlOQQcZWqACBQ04YgVEsPArQQwIGMhVoIuciYg5+xTOwYfaFmZRzBCRbeK/jquSy2q4tmtajlrGUxQcJipDECEv5J4MyDN5IK/k889aXaeG7aWDszTUUqMauFjJfvyrUnHm0PhWjfXMoQZ7jleG3g2HsW8hD/Xts6tBNpGJdNfJLXlD/zekT57wBlr7Xb5L00xvjB8JveCLYYNiv9sxCvKb0dhONJ6Oh5MHbqu8sAprsIH92IUkHEMKck4fLqEH14Jf2BISwv4wVfC4mmX4EcLRF1Zrksw=
✓5
AAAClnichVHLSsNAFD3GV62vVjeCm2JRXJWJ+MKFFEV0WVurBSshiVMNTZOYTCta/AF/wIW4UFARP8APcOMPuOgniEsFNy68SQOiot4wmTNn7rlzZq7mmIYnGGu0SK1t7R2dka5od09vX38sPrDu2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvaOVFf3+jxl3PsK01ceDwrYq6YxklQ1cFUUosXlDkRNHke4mi2OVCVaaUWJKlWBCJn0AOQRJhZOzYHYrYhg0dVVTAYUEQNqHCo28TMhgc4rZQJ84lZAT7HEeIkrZKWZwyVGLL9N+h1WbIWrT2a3qBWqdTTBouKRMYZY/shr2wB3bLntj7r7XqQQ3fywHNWlPLHaX/eCj39q+qQrPA7qfqT88CJcwGXg3y7gSMfwu9qa8dnrzk5rKj9TF2wZ7J/zlrsHu6gVV71S9Xefb0Dz8aeaEXowbJ39vxE6xPpOTp1OTqZDK9ELYqgmGMYJz6MYM0VpBBnurv4wxXuJaGpHlpSVpupkotoWYQX0LKfAA5/pYd
X1
✓5
yes no
Red
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmQQooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaGwnmsgkwqkDt1VeWIcN2MJ+7EIKjiENeacPl9CHa8EvxIWksD9KFTyuZhV+hHD0BVIrkso=
✓3
AAAClnichVHLSsNAFD3GV3221Y3gplgUV2WiRcWFFEV0Wa3VgpWQxKmGpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxKWCGxfepAFRUW+YzJkz99w5M1dzTMMTjDVapNa29o7OSFd3T29ffzQWH1j37Kqr87xum7Zb0FSPm4bF88IQJi84Llcrmsk3tPKCv79R465n2NaaOHD4VkXdsYySoauCKCUWLyhyomjyvURR7HKhKpNKLMlSLIjETyCHIIkwsnbsDkVsw4aOKirgsCAIm1Dh0bcJGQwOcVuoE+cSMoJ9jiN0k7ZKWZwyVGLL9N+h1WbIWrT2a3qBWqdTTBouKRMYZY/shr2wB3bLntj7r7XqQQ3fywHNWlPLHSV6PJR7+1dVoVlg91P1p2eBEmYCrwZ5dwLGv4Xe1NcOT15ys6uj9TF2wZ7J/zlrsHu6gVV71S9X+OrpH3408kIvRg2Sv7fjJ1ifSMlTqfRKOpmZD1sVwTBGME79mEYGy8giT/X3cYYrXEtD0py0KC01U6WWUDOILyFlPwA1vpYb
X1
✓3
yes no
Red
寸㹀加ךⰅ⸂瑞ⴓⶴ
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSTayFoyRO3IiMAtEDUfAibYQfoQInYIACLdCAgg4csQoS2PiVQQQCJnJV6CJnIWLuPoVzCKC2hVkUMyRkm/iv46rssTqunZq2q1bwFBWHhcoIxMgLuScD8kweyCv5/LNW163heOngLA+11KyFLlZyH/+qNJw5NL5VYz1zOIVd1ytD76bLOLdQhvr22dUgl8zGuuvklryh/xvSJ094A739rtxlaLY3xo+MXvDFsEHi73aMgsJmXNyOJzKJaGrfa5UfVmENNrAfO5CCI0hD3u3DJfTgWggKW0JS2BumCj5Psww/Qjj8Ak3rksg=
✓1
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGZiRVNvh8rijIXqiIrkThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOslho=
X2
✓1
yes no
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRAooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4V4NLYTTWQS4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXtoWksD9KFTyuZhV+hHD0BVALksk=
✓2
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGRY0WT78eKosyFqswokThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOelho=
X1
✓2
yes no
Blue
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSLVELR0mcuBEZBaIHouBF2gg/QgVOwAAFWqABBR04YhUksPErgwgETOSq0EXOQsTcfQrnEEBtC7MoZkjINvFfx1XZY3VcOzVtV63gKSoOC5URiJEXck8G5Jk8kFfy+WetrlvD8dLBWR5qqVkLXazkPv5VaThzaHyrxnrmcAq7rleG3k2XcW6hDPXts6tBLpmNddfJLXlD/zekT57wBnr7XbnL0GxvjB8ZveCLYYPE3+0YBYXNuLgdT2QS0dS+1yo/rMIabGA/diAFR5CGvNuHS+jBtRAUtoSksDdMFXyeZhl+hHD4BVRLkss=
✓4
AAAClnichVHLSsNAFD2N7/qquim4KZaKqzItRcWFiCK6rNZqoZWQxGkbTJOYTCta/AF/wIW4UFARP8APcOMPuOgniMsKblx4mwZExXrDZM6cuefOmbmqbeiuYKwRkLq6e3r7+geCg0PDI6OhsfFt16o6Gs9qlmE5OVVxuaGbPCt0YfCc7XClohp8R91fae3v1Ljj6pa5JY5svltRSqZe1DVFECWHxnJyMlIw+EGkIMpcKHJKDkVZnHkR+Q0SPojCj7QVekABe7CgoYoKOEwIwgYUuPTlkQCDTdwu6sQ5hHRvn+MEQdJWKYtThkLsPv1LtMr7rEnrVk3XU2t0ikHDIWUEMfbM7liTPbF79sI+/qxV92q0vBzRrLa13JZHT8OZ939VFZoFyl+qjp4Fipj3vOrk3faY1i20tr52fNbMLGzG6tPsir2S/0vWYI90A7P2pl1v8M3zDn5U8kIvRg1K/GzHb7CdjCdm46mNVHRp2W9VPyYxhRnqxxyWsI40slT/EBe4wa0UlhalVWmtnSoFfM0EvoWU/gQ6DJYd
X2
✓4
yes no
Red
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRQfIRYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixPS9wgTk1PTM95Z39y8fyEQXFzKW3rLlGlO1hXdLEqiRRWm0RxnXKFFw6SiKim0IDUP7f1Cm5oW07UT3jFoRRXrGqsxWeRIFcu8QblY3a4GwyRKnAiNgpgLwuBGSg8+QhlOQQcZWqACBQ04YgVEsPArQQwIGMhVoIuciYg5+xTOwYfaFmZRzBCRbeK/jquSy2q4tmtajlrGUxQcJipDECEv5J4MyDN5IK/k889aXaeG7aWDszTUUqMauFjJfvyrUnHm0PhWjfXMoQZ7jleG3g2HsW8hD/Xts6tBNpGJdNfJLXlD/zekT57wBlr7Xb5L00xvjB8JveCLYYNiv9sxCvKb0dhONJ6Oh5MHbqu8sAprsIH92IUkHEMKck4fLqEH14Jf2BISwv4wVfC4mmX4EcLRF1Zrksw=
✓5
AAAClnichVHLSsNAFD3GV62vVjeCm2JRXJWJ+MKFFEV0WVurBSshiVMNTZOYTCta/AF/wIW4UFARP8APcOMPuOgniEsFNy68SQOiot4wmTNn7rlzZq7mmIYnGGu0SK1t7R2dka5od09vX38sPrDu2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvaOVFf3+jxl3PsK01ceDwrYq6YxklQ1cFUUosXlDkRNHke4mi2OVCVaaUWJKlWBCJn0AOQRJhZOzYHYrYhg0dVVTAYUEQNqHCo28TMhgc4rZQJ84lZAT7HEeIkrZKWZwyVGLL9N+h1WbIWrT2a3qBWqdTTBouKRMYZY/shr2wB3bLntj7r7XqQQ3fywHNWlPLHaX/eCj39q+qQrPA7qfqT88CJcwGXg3y7gSMfwu9qa8dnrzk5rKj9TF2wZ7J/zlrsHu6gVV71S9Xefb0Dz8aeaEXowbJ39vxE6xPpOTp1OTqZDK9ELYqgmGMYJz6MYM0VpBBnurv4wxXuJaGpHlpSVpupkotoWYQX0LKfAA5/pYd
X1
✓5
yes no
Red
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRQgoZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYS9SCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaCwRjWfi4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXdoSksD9KFTyuZhV+hHD0BViLks0=
✓6
AAAClnichVHLSsNAFD3Gd321uhHcFIviqkykVHEhRRFd9mG1YCUkcWyDaRKTaUWLP+APuBAXCiriB/gBbvwBF/0EcVnBjQtv04CoqDdM5syZe+6cmas5puEJxhodUmdXd09vX39oYHBoeCQcGd3w7Kqr87xum7Zb0FSPm4bF88IQJi84Llcrmsk3tb3l1v5mjbueYVvr4tDh2xW1ZBm7hq4KopRwpKDI0aLJ96NFUeZCVZJKOMbizI/oTyAHIIYg0nb4HkXswIaOKirgsCAIm1Dh0bcFGQwOcduoE+cSMvx9jmOESFulLE4ZKrF79C/RaitgLVq3anq+WqdTTBouKaOYYk/sljXZI7tjz+z911p1v0bLyyHNWlvLHWXkZDz39q+qQrNA+VP1p2eBXcz7Xg3y7vhM6xZ6W187Om3mFrJT9Wl2yV7I/wVrsAe6gVV71a8yPHv2hx+NvNCLUYPk7+34CTZm43IynsgkYqmloFV9mMAkZqgfc0hhDWnkqf4BznGNG2lcWpRWpNV2qtQRaMbwJaT0Bzwelh4=
X1
✓6
yes no
Red
Blue
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmQQooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaGwnmsgkwqkDt1VeWIcN2MJ+7EIKjiENeacPl9CHa8EvxIWksD9KFTyuZhV+hHD0BVIrkso=
✓3
AAAClnichVHLSsNAFD3GV3221Y3gplgUV2WiRcWFFEV0Wa3VgpWQxKmGpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxKWCGxfepAFRUW+YzJkz99w5M1dzTMMTjDVapNa29o7OSFd3T29ffzQWH1j37Kqr87xum7Zb0FSPm4bF88IQJi84Llcrmsk3tPKCv79R465n2NaaOHD4VkXdsYySoauCKCUWLyhyomjyvURR7HKhKpNKLMlSLIjETyCHIIkwsnbsDkVsw4aOKirgsCAIm1Dh0bcJGQwOcVuoE+cSMoJ9jiN0k7ZKWZwyVGLL9N+h1WbIWrT2a3qBWqdTTBouKRMYZY/shr2wB3bLntj7r7XqQQ3fywHNWlPLHSV6PJR7+1dVoVlg91P1p2eBEmYCrwZ5dwLGv4Xe1NcOT15ys6uj9TF2wZ7J/zlrsHu6gVV71S9X+OrpH3408kIvRg2Sv7fjJ1ifSMlTqfRKOpmZD1sVwTBGME79mEYGy8giT/X3cYYrXEtD0py0KC01U6WWUDOILyFlPwA1vpYb
X1
✓3
yes no
Red
寸㹀加ךⰅ⸂瑞ⴓⶴ
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSTayFoyRO3IiMAtEDUfAibYQfoQInYIACLdCAgg4csQoS2PiVQQQCJnJV6CJnIWLuPoVzCKC2hVkUMyRkm/iv46rssTqunZq2q1bwFBWHhcoIxMgLuScD8kweyCv5/LNW163heOngLA+11KyFLlZyH/+qNJw5NL5VYz1zOIVd1ytD76bLOLdQhvr22dUgl8zGuuvklryh/xvSJ094A739rtxlaLY3xo+MXvDFsEHi73aMgsJmXNyOJzKJaGrfa5UfVmENNrAfO5CCI0hD3u3DJfTgWggKW0JS2BumCj5Psww/Qjj8Ak3rksg=
✓1
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGZiRVNvh8rijIXqiIrkThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOslho=
X2
✓1
yes no
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRAooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4V4NLYTTWQS4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXtoWksD9KFTyuZhV+hHD0BVALksk=
✓2
AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGRY0WT78eKosyFqswokThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOelho=
X1
✓2
yes no
Blue
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSLVELR0mcuBEZBaIHouBF2gg/QgVOwAAFWqABBR04YhUksPErgwgETOSq0EXOQsTcfQrnEEBtC7MoZkjINvFfx1XZY3VcOzVtV63gKSoOC5URiJEXck8G5Jk8kFfy+WetrlvD8dLBWR5qqVkLXazkPv5VaThzaHyrxnrmcAq7rleG3k2XcW6hDPXts6tBLpmNddfJLXlD/zekT57wBnr7XbnL0GxvjB8ZveCLYYPE3+0YBYXNuLgdT2QS0dS+1yo/rMIabGA/diAFR5CGvNuHS+jBtRAUtoSksDdMFXyeZhl+hHD4BVRLkss=
✓4
AAAClnichVHLSsNAFD2N7/qquim4KZaKqzItRcWFiCK6rNZqoZWQxGkbTJOYTCta/AF/wIW4UFARP8APcOMPuOgniMsKblx4mwZExXrDZM6cuefOmbmqbeiuYKwRkLq6e3r7+geCg0PDI6OhsfFt16o6Gs9qlmE5OVVxuaGbPCt0YfCc7XClohp8R91fae3v1Ljj6pa5JY5svltRSqZe1DVFECWHxnJyMlIw+EGkIMpcKHJKDkVZnHkR+Q0SPojCj7QVekABe7CgoYoKOEwIwgYUuPTlkQCDTdwu6sQ5hHRvn+MEQdJWKYtThkLsPv1LtMr7rEnrVk3XU2t0ikHDIWUEMfbM7liTPbF79sI+/qxV92q0vBzRrLa13JZHT8OZ939VFZoFyl+qjp4Fipj3vOrk3faY1i20tr52fNbMLGzG6tPsir2S/0vWYI90A7P2pl1v8M3zDn5U8kIvRg1K/GzHb7CdjCdm46mNVHRp2W9VPyYxhRnqxxyWsI40slT/EBe4wa0UlhalVWmtnSoFfM0EvoWU/gQ6DJYd
X2
✓4
yes no
Red
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRQfIRYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixPS9wgTk1PTM95Z39y8fyEQXFzKW3rLlGlO1hXdLEqiRRWm0RxnXKFFw6SiKim0IDUP7f1Cm5oW07UT3jFoRRXrGqsxWeRIFcu8QblY3a4GwyRKnAiNgpgLwuBGSg8+QhlOQQcZWqACBQ04YgVEsPArQQwIGMhVoIuciYg5+xTOwYfaFmZRzBCRbeK/jquSy2q4tmtajlrGUxQcJipDECEv5J4MyDN5IK/k889aXaeG7aWDszTUUqMauFjJfvyrUnHm0PhWjfXMoQZ7jleG3g2HsW8hD/Xts6tBNpGJdNfJLXlD/zekT57wBlr7Xb5L00xvjB8JveCLYYNiv9sxCvKb0dhONJ6Oh5MHbqu8sAprsIH92IUkHEMKck4fLqEH14Jf2BISwv4wVfC4mmX4EcLRF1Zrksw=
✓5
AAAClnichVHLSsNAFD3GV62vVjeCm2JRXJWJ+MKFFEV0WVurBSshiVMNTZOYTCta/AF/wIW4UFARP8APcOMPuOgniEsFNy68SQOiot4wmTNn7rlzZq7mmIYnGGu0SK1t7R2dka5od09vX38sPrDu2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvaOVFf3+jxl3PsK01ceDwrYq6YxklQ1cFUUosXlDkRNHke4mi2OVCVaaUWJKlWBCJn0AOQRJhZOzYHYrYhg0dVVTAYUEQNqHCo28TMhgc4rZQJ84lZAT7HEeIkrZKWZwyVGLL9N+h1WbIWrT2a3qBWqdTTBouKRMYZY/shr2wB3bLntj7r7XqQQ3fywHNWlPLHaX/eCj39q+qQrPA7qfqT88CJcwGXg3y7gSMfwu9qa8dnrzk5rKj9TF2wZ7J/zlrsHu6gVV71S9Xefb0Dz8aeaEXowbJ39vxE6xPpOTp1OTqZDK9ELYqgmGMYJz6MYM0VpBBnurv4wxXuJaGpHlpSVpupkotoWYQX0LKfAA5/pYd
X1
✓5
yes no
Red
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRQgoZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYS9SCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaCwRjWfi4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXdoSksD9KFTyuZhV+hHD0BViLks0=
✓6
AAAClnichVHLSsNAFD3Gd321uhHcFIviqkykVHEhRRFd9mG1YCUkcWyDaRKTaUWLP+APuBAXCiriB/gBbvwBF/0EcVnBjQtv04CoqDdM5syZe+6cmas5puEJxhodUmdXd09vX39oYHBoeCQcGd3w7Kqr87xum7Zb0FSPm4bF88IQJi84Llcrmsk3tb3l1v5mjbueYVvr4tDh2xW1ZBm7hq4KopRwpKDI0aLJ96NFUeZCVZJKOMbizI/oTyAHIIYg0nb4HkXswIaOKirgsCAIm1Dh0bcFGQwOcduoE+cSMvx9jmOESFulLE4ZKrF79C/RaitgLVq3anq+WqdTTBouKaOYYk/sljXZI7tjz+z911p1v0bLyyHNWlvLHWXkZDz39q+qQrNA+VP1p2eBXcz7Xg3y7vhM6xZ6W187Om3mFrJT9Wl2yV7I/wVrsAe6gVV71a8yPHv2hx+NvNCLUYPk7+34CTZm43IynsgkYqmloFV9mMAkZqgfc0hhDWnkqf4BznGNG2lcWpRWpNV2qtQRaMbwJaT0Bzwelh4=
X1
✓6
yes no
Red
Blue
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmQQooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaGwnmsgkwqkDt1VeWIcN2MJ+7EIKjiENeacPl9CHa8EvxIWksD9KFTyuZhV+hHD0BVIrkso=
✓3
AAAClnichVHLSsNAFD3GV3221Y3gplgUV2WiRcWFFEV0Wa3VgpWQxKmGpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxKWCGxfepAFRUW+YzJkz99w5M1dzTMMTjDVapNa29o7OSFd3T29ffzQWH1j37Kqr87xum7Zb0FSPm4bF88IQJi84Llcrmsk3tPKCv79R465n2NaaOHD4VkXdsYySoauCKCUWLyhyomjyvURR7HKhKpNKLMlSLIjETyCHIIkwsnbsDkVsw4aOKirgsCAIm1Dh0bcJGQwOcVuoE+cSMoJ9jiN0k7ZKWZwyVGLL9N+h1WbIWrT2a3qBWqdTTBouKRMYZY/shr2wB3bLntj7r7XqQQ3fywHNWlPLHSV6PJR7+1dVoVlg91P1p2eBEmYCrwZ5dwLGv4Xe1NcOT15ys6uj9TF2wZ7J/zlrsHu6gVV71S9X+OrpH3408kIvRg2Sv7fjJ1ifSMlTqfRKOpmZD1sVwTBGME79mEYGy8giT/X3cYYrXEtD0py0KC01U6WWUDOILyFlPwA1vpYb
X1
✓3
yes no
Red
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRQIoZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYS9SCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaGw3Gs/Ew6kDt1VeWIcN2MJ+JCAFx5CGvNOHS+jDteAXdoSksD9KFTyuZhV+hHD0BVqrks4=
✓7
AAAClnichVHLSsNAFD3Gd321uhHcFIviqkykWHEhRRFd9mG1YCUkcWyDaRKTaUWLP+APuBAXCiriB/gBbvwBF/0EcVnBjQtv04CoqDdM5syZe+6cmas5puEJxhodUmdXd09vX39oYHBoeCQcGd3w7Kqr87xum7Zb0FSPm4bF88IQJi84Llcrmsk3tb3l1v5mjbueYVvr4tDh2xW1ZBm7hq4KopRwpKDI0aLJ96NFUeZCVZJKOMbizI/oTyAHIIYg0nb4HkXswIaOKirgsCAIm1Dh0bcFGQwOcduoE+cSMvx9jmOESFulLE4ZKrF79C/RaitgLVq3anq+WqdTTBouKaOYYk/sljXZI7tjz+z911p1v0bLyyHNWlvLHWXkZDz39q+qQrNA+VP1p2eBXcz7Xg3y7vhM6xZ6W187Om3mFrJT9Wl2yV7I/wVrsAe6gVV71a8yPHv2hx+NvNCLUYPk7+34CTZm4/JcPJFJxFJLQav6MIFJzFA/kkhhDWnkqf4BznGNG2lcWpRWpNV2qtQRaMbwJaT0Bz4+lh8=
X1
✓7
yes no
Blue Blue
寸㹀加ךⰅ⸂瑞ⴓⶴ
寸㹀加כ걄㚖ⴓⶴ♳ך㢳如⯋ؼأزؚٓي ⼒ⴓ涸㹀侧✮庠
19
8
35 2
predict_proba(x)
red blue
8/27 = 0.296
19/27 = 0.704
0.0
1.0
0.704
0.296
ⴓ겲加
Piecewise "constant"
̔չ(SFFEZד㧅䔲䚍ֶראַזְذؗز٦ז걄㚖ⴓⶴպחչ馄؝ٝ؟غז✮庠պ䫴さׇ
̔窟鎘涸חכקהו穗꿀ⴓ䋒ח鵚ְ葺ְ䚍颵䭯א 䝤ְֿהָꬊ䌢ח饯ֹבְ
寸㹀加ךⰅ⸂瑞ⴓⶴ
㔐䌓加
Piecewise "constant"
寸㹀加כ걄㚖ⴓⶴ♳ך㢳如⯋ؼأزؚٓي ⼒ⴓ涸㹀侧✮庠
̔չ(SFFEZד㧅䔲䚍ֶראַזְذؗز٦ז걄㚖ⴓⶴպחչ馄؝ٝ؟غז✮庠պ䫴さׇ
̔窟鎘涸חכקהו穗꿀ⴓ䋒ח鵚ְ葺ְ䚍颵䭯א 䝤ְֿהָꬊ䌢ח饯ֹבְ
寸㹀加ךⰅ⸂瑞ⴓⶴ
㔐䌓加
Piecewise "constant"
寸㹀加כ걄㚖ⴓⶴ♳ך㢳如⯋ؼأزؚٓي ⼒ⴓ涸㹀侧✮庠
̔չ(SFFEZד㧅䔲䚍ֶראַזְذؗز٦ז걄㚖ⴓⶴպחչ馄؝ٝ؟غז✮庠պ䫴さׇ
̔窟鎘涸חכקהו穗꿀ⴓ䋒ח鵚ְ葺ְ䚍颵䭯א 䝤ְֿהָꬊ䌢ח饯ֹבְ
ך걄㚖חֶ
؟ٝفٕך䎂㖱⦼
寸㹀加ךⰅ⸂瑞ⴓⶴ
㔐䌓加
Piecewise "constant"
寸㹀加כ걄㚖ⴓⶴ♳ך㢳如⯋ؼأزؚٓي ⼒ⴓ涸㹀侧✮庠
̔չ(SFFEZד㧅䔲䚍ֶראַזְذؗز٦ז걄㚖ⴓⶴպחչ馄؝ٝ؟غז✮庠պ䫴さׇ
̔窟鎘涸חכקהו穗꿀ⴓ䋒ח鵚ְ葺ְ䚍颵䭯א 䝤ְֿהָꬊ䌢ח饯ֹבְ
ך걄㚖חֶ
؟ٝفٕך䎂㖱⦼
寸㹀加ךⰅ⸂瑞ⴓⶴ
㔐䌓加
Piecewise "constant"
寸㹀加כ걄㚖ⴓⶴ♳ך㢳如⯋ؼأزؚٓي ⼒ⴓ涸㹀侧✮庠
̔չ(SFFEZד㧅䔲䚍ֶראַזְذؗز٦ז걄㚖ⴓⶴպחչ馄؝ٝ؟غז✮庠պ䫴さׇ
̔窟鎘涸חכקהו穗꿀ⴓ䋒ח鵚ְ葺ְ䚍颵䭯א 䝤ְֿהָꬊ䌢ח饯ֹבְ
寸㹀加ךⰅ⸂瑞ⴓⶴ
寸㹀加،ٝ؟ٝـٕכך ꅾ➰ֹ
ㄤ
= + +
+ + +
RandomForestClassifier
(n_estimators=6,
max_leaf_nodes=4)
6 × DecisionTreeClassifier(max_leaf_nodes=4)
،ٝ؟ٝـٕ䖓ך
걄㚖侧כ穈さׇד
״㣐䌴ח㟓ִ
⸇岀ٌرٕ ㄤ
ח״걄㚖ך稢ⴓ
Piecewise "constant"
4QMJOFה殯ז
㞮歲דך鸬竲䚍כ
Ⰻֻ䬐⥂ׁזְ
׃،ٝ؟ٝـٕ
ח״䎂徽⻉⸬卓ד
ׯׯ♶鸬竲
חכזבְ
寸㹀加ךⰅ⸂瑞ⴓⶴ
寸㹀加،ٝ؟ٝـٕכך ꅾ➰ֹ
ㄤ
RandomForestRegressor
(n_estimators=6,
max_leaf_nodes=8)
= + +
+ + +
6 × DecisionTreeRegressor(max_leaf_nodes=8)
Piecewise "constant"
4QMJOFה殯ז
㞮歲דך鸬竲䚍כ
Ⰻֻ䬐⥂ׁזְ
׃،ٝ؟ٝـٕ
ח״䎂徽⻉⸬卓ד
ׯׯ♶鸬竲
חכזבְ
⸇岀ٌرٕ ㄤ
ח״걄㚖ך稢ⴓ
寸㹀加ךⰅ⸂瑞ⴓⶴ
Random forests ntree=10
Extra trees ntree=10
Piecewise "constant"
4QMJOFה殯ז
㞮歲דך鸬竲䚍כ
Ⰻֻ䬐⥂ׁזְ
׃،ٝ؟ٝـٕ
ח״䎂徽⻉⸬卓ד
ׯׯ♶鸬竲
חכזבְ
⸇岀ٌرٕ ㄤ
ח״걄㚖ך稢ⴓ
罋0CMJWJPVT5SFFTךⴓⶴ
寸㹀加ع٦س⻉ׅהַ4PGU5SFFTזו鎘皾ָطحؙחז㜥さծ
ずٖׄكٕךTQMJUUFSךⰟ剣 0CMJWJPVT5SFFT
ָ剣⸬ /0%&
$BU#PPTU
FUD
0CMJWJPVTח׃״ֲָ׃תְָծ׃加侧ָꬊ䌢ח㣐ֹֻדֹזוֲׇקר
瑞ًحءُ涸圓鸡חזךד鵚⡂腉⸂♳קר䊴כזֻծ鎘皾⸬桦⻉ך䛷䜋ֽ
ֲתֻ❦「דֹךַ
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSTayFoyRO3IiMAtEDUfAibYQfoQInYIACLdCAgg4csQoS2PiVQQQCJnJV6CJnIWLuPoVzCKC2hVkUMyRkm/iv46rssTqunZq2q1bwFBWHhcoIxMgLuScD8kweyCv5/LNW163heOngLA+11KyFLlZyH/+qNJw5NL5VYz1zOIVd1ytD76bLOLdQhvr22dUgl8zGuuvklryh/xvSJ094A739rtxlaLY3xo+MXvDFsEHi73aMgsJmXNyOJzKJaGrfa5UfVmENNrAfO5CCI0hD3u3DJfTgWggKW0JS2BumCj5Psww/Qjj8Ak3rksg=
✓1
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRAooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4V4NLYTTWQS4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXtoWksD9KFTyuZhV+hHD0BVALksk=
✓2
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmQQooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaGwnmsgkwqkDt1VeWIcN2MJ+7EIKjiENeacPl9CHa8EvxIWksD9KFTyuZhV+hHD0BVIrkso=
✓3
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64ANpW3aQoLEHzBxKwtXmrgwfoAf4MYfcMEnGJeYuHHhpTQxSsTbTOfMmXvunJkrm5pqO4z1fMLE5NT0jH82MDe/sBgMLS3nbaNpKTynGJphFWXJ5pqq85yjOhovmhaXGrLGC3L9YLBfaHHLVg39yGmbvNyQarpaVRXJISpbrIiVUITFmBvhUSB6IAIvUkboEcc4gQEFTTTAocMhrEGCTV8JIhhM4sroEGcRUt19jnMESNukLE4ZErF1+tdoVfJYndaDmrarVugUjYZFyjCi7IXdsz57Zg/slX3+Wavj1hh4adMsD7XcrAQvVrMf/6oaNDs4/VaN9eygil3Xq0reTZcZ3EIZ6ltn3X52LxPtbLBb9kb+b1iPPdEN9Na7cpfmmesxfmTyQi9GDRJ/t2MU5Ldi4k4sno5Hkvteq/xYwzo2qR8JJHGIFHJUv4ZLXKEr+IWYsC0khqmCz9Os4EcIyS8QcpB8
X1
AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAUIwV0caShzwSJGR3HXHDvrK7kCDxB0xspbDSxML4AX6AjT9gwScYS0xsLLwsmxgl4t3Mzpkz99w5M1cyVcV2GOv5hInJqekZ/2xgbn5hMRhaWi7aRtOSeUE2VMMqS6LNVUXnBUdxVF42LS5qkspLUmN/sF9qcctWDP3QaZu8qol1XTlRZNEhKl+uJWqhCIsxN8KjIO6BCLzIGKFHHOEYBmQ0oYFDh0NYhQibvgriYDCJq6JDnEVIcfc5zhEgbZOyOGWIxDboX6dVxWN1Wg9q2q5aplNUGhYpw4iyF3bP+uyZPbBX9vlnrY5bY+ClTbM01HKzFrxYzX/8q9JodnD6rRrr2cEJdlyvCnk3XWZwC3mob511+/ndXLSzwW7ZG/m/YT32RDfQW+/yXZbnrsf4kcgLvRg1KP67HaOgmIjFt2PJbDKS3vNa5cca1rFJ/UghjQNkUKD6dVziCl3BL8SELSE1TBV8nmYFP0JIfwESkpB9
X2
AAAClnichVHLSsNAFD2N73fUjeAmWCquZCKC4kJEEV22am2hLSGJow3Ny2Ra0eIP+AMuxIWCivgBfoAbf8CFnyAuFdy48DYNiIp6w2TOnLnnzpm5hm9boWDsMSG1tLa1d3R2dff09vUPyINDm6FXDUyeNT3bC/KGHnLbcnlWWMLmeT/gumPYPGdUlhr7uRoPQstzN8S+z0uOvuNa25apC6I0eTCvqUrR5rtKUZS50DVVk5NskkWh/ARqDJKII+3JtyhiCx5MVOGAw4UgbENHSF8BKhh84kqoExcQsqJ9jkN0k7ZKWZwydGIr9N+hVSFmXVo3aoaR2qRTbBoBKRWk2AO7Zi/snt2wJ/b+a616VKPhZZ9mo6nlvjZwNLL+9q/KoVmg/Kn607PANmYjrxZ59yOmcQuzqa8dHL+sz62l6uPsnD2T/zP2yO7oBm7t1bzI8LWTP/wY5IVejBqkfm/HT7A5NakSzkwnFxbjVnViFGOYoH7MYAGrSCNL9fdwiktcSSPSvLQsrTRTpUSsGcaXkNIfLpKWEA==
AAAClnichVHLSsNAFD3GV62vVjeCm2JRXMmkCooLKYrosg+rBSshiWMbTJOYTCu1+AP+gAtxoaAifoAf4MYfcOEniEsFNy68SQOiot4wmTNn7rlzZq7mmIYnGHtsk9o7Oru6Iz3R3r7+gcFYfGjds2uuzgu6bdpuUVM9bhoWLwhDmLzouFytaibf0HaX/P2NOnc9w7bWRMPhW1W1bBk7hq4KopRYvKikEiWT7yVKosKFqkwrsSSbYkEkfgI5BEmEkbFjtyhhGzZ01FAFhwVB2IQKj75NyGBwiNtCkziXkBHscxwiStoaZXHKUIndpX+ZVpsha9Har+kFap1OMWm4pExgnD2wa/bC7tkNe2Lvv9ZqBjV8Lw2atZaWO8rg0Uj+7V9VlWaByqfqT88CO5gLvBrk3QkY/xZ6S18/OH7Jz+fGmxPsnD2T/zP2yO7oBlb9Vb/I8tzJH3408kIvRg2Sv7fjJ1hPTcmEszPJ9GLYqghGMYZJ6scs0lhFBgWqv49TXOJKGpEWpGVppZUqtYWaYXwJKfMBNQCWEw==
AAAClnichVHLSsNAFD2Nr1pfrW4KbopFcSXTIigupCiiyz6sFqyEJE7bYF4m00ot/oA/4EJcKKiIH+AHuPEHXPgJ4lLBjQtv04CoqDdM5syZe+6cmas6hu4Jxh5DUld3T29fuD8yMDg0PBKNjW54dt3VeFGzDdstqYrHDd3iRaELg5cclyumavBNdXe5vb/Z4K6n29a6aDp821Sqll7RNUUQJUdjJTmdKBt8L1EWNS4UOS1Hk2yG+ZH4CVIBSCKIrB29RRk7sKGhDhMcFgRhAwo8+raQAoND3DZaxLmEdH+f4xAR0tYpi1OGQuwu/au02gpYi9btmp6v1ugUg4ZLygQm2QO7Zi/snt2wJ/b+a62WX6PtpUmz2tFyRx45ihfe/lWZNAvUPlV/ehaoYN73qpN3x2fat9A6+sbB8UthIT/ZmmLn7Jn8n7FHdkc3sBqv2kWO50/+8KOSF3oxalDqezt+go30TIpwbjaZWQpaFcY4JjBN/ZhDBmvIokj193GKS1xJcWlRWpFWO6lSKNCM4UtI2Q8y4JYS
AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSTayFoyRO3IiMAtEDUfAibYQfoQInYIACLdCAgg4csQoS2PiVQQQCJnJV6CJnIWLuPoVzCKC2hVkUMyRkm/iv46rssTqunZq2q1bwFBWHhcoIxMgLuScD8kweyCv5/LNW163heOngLA+11KyFLlZyH/+qNJw5NL5VYz1zOIVd1ytD76bLOLdQhvr22dUgl8zGuuvklryh/xvSJ094A739rtxlaLY3xo+MXvDFsEHi73aMgsJmXNyOJzKJaGrfa5UfVmENNrAfO5CCI0hD3u3DJfTgWggKW0JS2BumCj5Psww/Qjj8Ak3rksg=
✓1
AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRAooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4V4NLYTTWQS4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXtoWksD9KFTyuZhV+hHD0BVALksk=
✓2
AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64ANpW3aQoLEHzBxKwtXmrgwfoAf4MYfcMEnGJeYuHHhpTQxSsTbTOfMmXvunJkrm5pqO4z1fMLE5NT0jH82MDe/sBgMLS3nbaNpKTynGJphFWXJ5pqq85yjOhovmhaXGrLGC3L9YLBfaHHLVg39yGmbvNyQarpaVRXJISpbrIiVUITFmBvhUSB6IAIvUkboEcc4gQEFTTTAocMhrEGCTV8JIhhM4sroEGcRUt19jnMESNukLE4ZErF1+tdoVfJYndaDmrarVugUjYZFyjCi7IXdsz57Zg/slX3+Wavj1hh4adMsD7XcrAQvVrMf/6oaNDs4/VaN9eygil3Xq0reTZcZ3EIZ6ltn3X52LxPtbLBb9kb+b1iPPdEN9Na7cpfmmesxfmTyQi9GDRJ/t2MU5Ldi4k4sno5Hkvteq/xYwzo2qR8JJHGIFHJUv4ZLXKEr+IWYsC0khqmCz9Os4EcIyS8QcpB8
X1
AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAUIwV0caShzwSJGR3HXHDvrK7kCDxB0xspbDSxML4AX6AjT9gwScYS0xsLLwsmxgl4t3Mzpkz99w5M1cyVcV2GOv5hInJqekZ/2xgbn5hMRhaWi7aRtOSeUE2VMMqS6LNVUXnBUdxVF42LS5qkspLUmN/sF9qcctWDP3QaZu8qol1XTlRZNEhKl+uJWqhCIsxN8KjIO6BCLzIGKFHHOEYBmQ0oYFDh0NYhQibvgriYDCJq6JDnEVIcfc5zhEgbZOyOGWIxDboX6dVxWN1Wg9q2q5aplNUGhYpw4iyF3bP+uyZPbBX9vlnrY5bY+ClTbM01HKzFrxYzX/8q9JodnD6rRrr2cEJdlyvCnk3XWZwC3mob511+/ndXLSzwW7ZG/m/YT32RDfQW+/yXZbnrsf4kcgLvRg1KP67HaOgmIjFt2PJbDKS3vNa5cca1rFJ/UghjQNkUKD6dVziCl3BL8SELSE1TBV8nmYFP0JIfwESkpB9
X2
AAAClnichVHLSsNAFD2N73fUjeAmWCquZCKC4kJEEV22am2hLSGJow3Ny2Ra0eIP+AMuxIWCivgBfoAbf8CFnyAuFdy48DYNiIp6w2TOnLnnzpm5hm9boWDsMSG1tLa1d3R2dff09vUPyINDm6FXDUyeNT3bC/KGHnLbcnlWWMLmeT/gumPYPGdUlhr7uRoPQstzN8S+z0uOvuNa25apC6I0eTCvqUrR5rtKUZS50DVVk5NskkWh/ARqDJKII+3JtyhiCx5MVOGAw4UgbENHSF8BKhh84kqoExcQsqJ9jkN0k7ZKWZwydGIr9N+hVSFmXVo3aoaR2qRTbBoBKRWk2AO7Zi/snt2wJ/b+a616VKPhZZ9mo6nlvjZwNLL+9q/KoVmg/Kn607PANmYjrxZ59yOmcQuzqa8dHL+sz62l6uPsnD2T/zP2yO7oBm7t1bzI8LWTP/wY5IVejBqkfm/HT7A5NakSzkwnFxbjVnViFGOYoH7MYAGrSCNL9fdwiktcSSPSvLQsrTRTpUSsGcaXkNIfLpKWEA==
AAAClnichVHLSsNAFD2Nr1pfrW4KbopFcSXTIigupCiiyz6sFqyEJE7bYF4m00ot/oA/4EJcKKiIH+AHuPEHXPgJ4lLBjQtv04CoqDdM5syZe+6cmas6hu4Jxh5DUld3T29fuD8yMDg0PBKNjW54dt3VeFGzDdstqYrHDd3iRaELg5cclyumavBNdXe5vb/Z4K6n29a6aDp821Sqll7RNUUQJUdjJTmdKBt8L1EWNS4UOS1Hk2yG+ZH4CVIBSCKIrB29RRk7sKGhDhMcFgRhAwo8+raQAoND3DZaxLmEdH+f4xAR0tYpi1OGQuwu/au02gpYi9btmp6v1ugUg4ZLygQm2QO7Zi/snt2wJ/b+a62WX6PtpUmz2tFyRx45ihfe/lWZNAvUPlV/ehaoYN73qpN3x2fat9A6+sbB8UthIT/ZmmLn7Jn8n7FHdkc3sBqv2kWO50/+8KOSF3oxalDqezt+go30TIpwbjaZWQpaFcY4JjBN/ZhDBmvIokj193GKS1xJcWlRWpFWO6lSKNCM4UtI2Q8y4JYS
AAAClnichVHLSsNAFD2Nr1pfrW4KbopFcSXTIigupCiiyz6sFqyEJE7bYF4m00ot/oA/4EJcKKiIH+AHuPEHXPgJ4lLBjQtv04CoqDdM5syZe+6cmas6hu4Jxh5DUld3T29fuD8yMDg0PBKNjW54dt3VeFGzDdstqYrHDd3iRaELg5cclyumavBNdXe5vb/Z4K6n29a6aDp821Sqll7RNUUQJUdjJTmdKBt8L1EWNS4UOS1Hk2yG+ZH4CVIBSCKIrB29RRk7sKGhDhMcFgRhAwo8+raQAoND3DZaxLmEdH+f4xAR0tYpi1OGQuwu/au02gpYi9btmp6v1ugUg4ZLygQm2QO7Zi/snt2wJ/b+a62WX6PtpUmz2tFyRx45ihfe/lWZNAvUPlV/ehaoYN73qpN3x2fat9A6+sbB8UthIT/ZmmLn7Jn8n7FHdkc3sBqv2kWO50/+8KOSF3oxalDqezt+go30TIpwbjaZWQpaFcY4JjBN/ZhDBmvIokj193GKS1xJcWlRWpFWO6lSKNCM4UtI2Q8y4JYS
0CMJWJPVT5SFFTًحءُ涸圓鸡חז
鸐䌢ךⱄ䌓涸✳ⴓⶴ
Random forests ntree=10
Extra trees ntree=10
寸㹀加ךⰅ⸂瑞ⴓⶴ
寸㹀加ך♧菙⻉
x1
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
x2
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
寸㹀加ךⰅ⸂瑞ⴓⶴ
寸㹀加ך♧菙⻉
x1
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
x2
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
n0
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
dn0
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
寸㹀加ךⰅ⸂瑞ⴓⶴ
寸㹀加ך♧菙⻉
x1
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
x2
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
n0
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
dn0
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
n1
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
dn1
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
寸㹀加ךⰅ⸂瑞ⴓⶴ
寸㹀加ך♧菙⻉
x1
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
x2
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
n0
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
dn0
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
`5
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
`6
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
n4
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
dn4
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
n1
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
dn1
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
寸㹀加ךⰅ⸂瑞ⴓⶴ
寸㹀加ך♧菙⻉
x1
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
x2
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
n0
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
dn0
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
`5
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
`6
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
n4
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
dn4
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
n1
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
dn1
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
`1
AAAB/XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJJxkzM7vMzAphCf6CV717E69+i1e/xEmyB00saCiquqmmokRwY33/y1tZXVvf2CxsFbd3dvf2SweHDROnmmGdxSLWrYgaFFxh3XIrsJVopDIS2IxGN1O/+Yja8Fjd23GCoaQDxfucUeukRgeF6AbdUtmv+DOQZRLkpAw5at3Sd6cXs1SiskxQY9qBn9gwo9pyJnBS7KQGE8pGdIBtRxWVaMJs9u2EnDqlR/qxdqMsmam/LzIqjRnLyG1Kaodm0ZuK/3qRXEi2/asw4ypJLSo2D+6ngtiYTKsgPa6RWTF2hDLN3e+EDammzLrCiq6UYLGCZdI4rwR+Jbi7KFev83oKcAwncAYBXEIVbqEGdWDwAM/wAq/ek/fmvXsf89UVL785gj/wPn8AiKSVhQ==
AAAB/XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJJxkzM7vMzAphCf6CV717E69+i1e/xEmyB00saCiquqmmokRwY33/y1tZXVvf2CxsFbd3dvf2SweHDROnmmGdxSLWrYgaFFxh3XIrsJVopDIS2IxGN1O/+Yja8Fjd23GCoaQDxfucUeukRgeF6AbdUtmv+DOQZRLkpAw5at3Sd6cXs1SiskxQY9qBn9gwo9pyJnBS7KQGE8pGdIBtRxWVaMJs9u2EnDqlR/qxdqMsmam/LzIqjRnLyG1Kaodm0ZuK/3qRXEi2/asw4ypJLSo2D+6ngtiYTKsgPa6RWTF2hDLN3e+EDammzLrCiq6UYLGCZdI4rwR+Jbi7KFev83oKcAwncAYBXEIVbqEGdWDwAM/wAq/ek/fmvXsf89UVL785gj/wPn8AiKSVhQ==
AAAB/XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJJxkzM7vMzAphCf6CV717E69+i1e/xEmyB00saCiquqmmokRwY33/y1tZXVvf2CxsFbd3dvf2SweHDROnmmGdxSLWrYgaFFxh3XIrsJVopDIS2IxGN1O/+Yja8Fjd23GCoaQDxfucUeukRgeF6AbdUtmv+DOQZRLkpAw5at3Sd6cXs1SiskxQY9qBn9gwo9pyJnBS7KQGE8pGdIBtRxWVaMJs9u2EnDqlR/qxdqMsmam/LzIqjRnLyG1Kaodm0ZuK/3qRXEi2/asw4ypJLSo2D+6ngtiYTKsgPa6RWTF2hDLN3e+EDammzLrCiq6UYLGCZdI4rwR+Jbi7KFev83oKcAwncAYBXEIVbqEGdWDwAM/wAq/ek/fmvXsf89UVL785gj/wPn8AiKSVhQ==
AAAB/XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJJxkzM7vMzAphCf6CV717E69+i1e/xEmyB00saCiquqmmokRwY33/y1tZXVvf2CxsFbd3dvf2SweHDROnmmGdxSLWrYgaFFxh3XIrsJVopDIS2IxGN1O/+Yja8Fjd23GCoaQDxfucUeukRgeF6AbdUtmv+DOQZRLkpAw5at3Sd6cXs1SiskxQY9qBn9gwo9pyJnBS7KQGE8pGdIBtRxWVaMJs9u2EnDqlR/qxdqMsmam/LzIqjRnLyG1Kaodm0ZuK/3qRXEi2/asw4ypJLSo2D+6ngtiYTKsgPa6RWTF2hDLN3e+EDammzLrCiq6UYLGCZdI4rwR+Jbi7KFev83oKcAwncAYBXEIVbqEGdWDwAM/wAq/ek/fmvXsf89UVL785gj/wPn8AiKSVhQ==
`2
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukVat6btW7u6jUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/ijiVhg==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukVat6btW7u6jUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/ijiVhg==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukVat6btW7u6jUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/ijiVhg==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukVat6btW7u6jUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/ijiVhg==
n2
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWaKoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSatW9b2qf3dRqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AD6wlD0=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWaKoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSatW9b2qf3dRqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AD6wlD0=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWaKoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSatW9b2qf3dRqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AD6wlD0=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWaKoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSatW9b2qf3dRqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AD6wlD0=
dn2
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8Xvjv1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcDh5Zp
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8Xvjv1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcDh5Zp
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8Xvjv1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcDh5Zp
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8Xvjv1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcDh5Zp
寸㹀加ךⰅ⸂瑞ⴓⶴ
寸㹀加ך♧菙⻉
x1
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
x2
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
n0
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
dn0
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
`5
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
`6
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
n4
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
dn4
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
n1
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
dn1
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
`1
AAAB/XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJJxkzM7vMzAphCf6CV717E69+i1e/xEmyB00saCiquqmmokRwY33/y1tZXVvf2CxsFbd3dvf2SweHDROnmmGdxSLWrYgaFFxh3XIrsJVopDIS2IxGN1O/+Yja8Fjd23GCoaQDxfucUeukRgeF6AbdUtmv+DOQZRLkpAw5at3Sd6cXs1SiskxQY9qBn9gwo9pyJnBS7KQGE8pGdIBtRxWVaMJs9u2EnDqlR/qxdqMsmam/LzIqjRnLyG1Kaodm0ZuK/3qRXEi2/asw4ypJLSo2D+6ngtiYTKsgPa6RWTF2hDLN3e+EDammzLrCiq6UYLGCZdI4rwR+Jbi7KFev83oKcAwncAYBXEIVbqEGdWDwAM/wAq/ek/fmvXsf89UVL785gj/wPn8AiKSVhQ==
AAAB/XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJJxkzM7vMzAphCf6CV717E69+i1e/xEmyB00saCiquqmmokRwY33/y1tZXVvf2CxsFbd3dvf2SweHDROnmmGdxSLWrYgaFFxh3XIrsJVopDIS2IxGN1O/+Yja8Fjd23GCoaQDxfucUeukRgeF6AbdUtmv+DOQZRLkpAw5at3Sd6cXs1SiskxQY9qBn9gwo9pyJnBS7KQGE8pGdIBtRxWVaMJs9u2EnDqlR/qxdqMsmam/LzIqjRnLyG1Kaodm0ZuK/3qRXEi2/asw4ypJLSo2D+6ngtiYTKsgPa6RWTF2hDLN3e+EDammzLrCiq6UYLGCZdI4rwR+Jbi7KFev83oKcAwncAYBXEIVbqEGdWDwAM/wAq/ek/fmvXsf89UVL785gj/wPn8AiKSVhQ==
AAAB/XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJJxkzM7vMzAphCf6CV717E69+i1e/xEmyB00saCiquqmmokRwY33/y1tZXVvf2CxsFbd3dvf2SweHDROnmmGdxSLWrYgaFFxh3XIrsJVopDIS2IxGN1O/+Yja8Fjd23GCoaQDxfucUeukRgeF6AbdUtmv+DOQZRLkpAw5at3Sd6cXs1SiskxQY9qBn9gwo9pyJnBS7KQGE8pGdIBtRxWVaMJs9u2EnDqlR/qxdqMsmam/LzIqjRnLyG1Kaodm0ZuK/3qRXEi2/asw4ypJLSo2D+6ngtiYTKsgPa6RWTF2hDLN3e+EDammzLrCiq6UYLGCZdI4rwR+Jbi7KFev83oKcAwncAYBXEIVbqEGdWDwAM/wAq/ek/fmvXsf89UVL785gj/wPn8AiKSVhQ==
AAAB/XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJJxkzM7vMzAphCf6CV717E69+i1e/xEmyB00saCiquqmmokRwY33/y1tZXVvf2CxsFbd3dvf2SweHDROnmmGdxSLWrYgaFFxh3XIrsJVopDIS2IxGN1O/+Yja8Fjd23GCoaQDxfucUeukRgeF6AbdUtmv+DOQZRLkpAw5at3Sd6cXs1SiskxQY9qBn9gwo9pyJnBS7KQGE8pGdIBtRxWVaMJs9u2EnDqlR/qxdqMsmam/LzIqjRnLyG1Kaodm0ZuK/3qRXEi2/asw4ypJLSo2D+6ngtiYTKsgPa6RWTF2hDLN3e+EDammzLrCiq6UYLGCZdI4rwR+Jbi7KFev83oKcAwncAYBXEIVbqEGdWDwAM/wAq/ek/fmvXsf89UVL785gj/wPn8AiKSVhQ==
`2
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukVat6btW7u6jUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/ijiVhg==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukVat6btW7u6jUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/ijiVhg==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukVat6btW7u6jUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/ijiVhg==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukVat6btW7u6jUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/ijiVhg==
n2
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWaKoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSatW9b2qf3dRqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AD6wlD0=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWaKoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSatW9b2qf3dRqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AD6wlD0=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWaKoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSatW9b2qf3dRqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AD6wlD0=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWaKoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSatW9b2qf3dRqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AD6wlD0=
dn2
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8Xvjv1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcDh5Zp
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8Xvjv1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcDh5Zp
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8Xvjv1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcDh5Zp
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8Xvjv1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcDh5Zp
`3
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL3zXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d1GpXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AIvMlYc=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL3zXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d1GpXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AIvMlYc=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL3zXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d1GpXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AIvMlYc=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL3zXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d1GpXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AIvMlYc=
`4
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukdVH13Kp3V6vUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/jWCViA==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukdVH13Kp3V6vUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/jWCViA==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukdVH13Kp3V6vUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/jWCViA==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukdVH13Kp3V6vUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/jWCViA==
n3
AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrsqaBm0sYxoHpAsYXYymwyZxzIzK4Q1n2CrvZ3Y+jO2fomTZAtNPHDhcM69nMuJEs6M9f0vr7Cyura+UdwsbW3v7O6V9w+aRqWa0AZRXOl2hA3lTNKGZZbTdqIpFhGnrWh0M/Vbj1QbpuSDHSc0FHggWcwItk66l73zXrniV/0Z0DIJclKBHPVe+bvbVyQVVFrCsTGdwE9smGFtGeF0UuqmhiaYjPCAdhyVWFATZrNXJ+jEKX0UK+1GWjRTf19kWBgzFpHbFNgOzaI3Ff/1IrGQbOOrMGMySS2VZB4cpxxZhaY9oD7TlFg+dgQTzdzviAyxxsS6tkqulGCxgmXSPKsGfjW4u6jUrvN6inAEx3AKAVxCDW6hDg0gMIBneIFX78l78969j/lqwctvDuEPvM8fQESUPg==
AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrsqaBm0sYxoHpAsYXYymwyZxzIzK4Q1n2CrvZ3Y+jO2fomTZAtNPHDhcM69nMuJEs6M9f0vr7Cyura+UdwsbW3v7O6V9w+aRqWa0AZRXOl2hA3lTNKGZZbTdqIpFhGnrWh0M/Vbj1QbpuSDHSc0FHggWcwItk66l73zXrniV/0Z0DIJclKBHPVe+bvbVyQVVFrCsTGdwE9smGFtGeF0UuqmhiaYjPCAdhyVWFATZrNXJ+jEKX0UK+1GWjRTf19kWBgzFpHbFNgOzaI3Ff/1IrGQbOOrMGMySS2VZB4cpxxZhaY9oD7TlFg+dgQTzdzviAyxxsS6tkqulGCxgmXSPKsGfjW4u6jUrvN6inAEx3AKAVxCDW6hDg0gMIBneIFX78l78969j/lqwctvDuEPvM8fQESUPg==
AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrsqaBm0sYxoHpAsYXYymwyZxzIzK4Q1n2CrvZ3Y+jO2fomTZAtNPHDhcM69nMuJEs6M9f0vr7Cyura+UdwsbW3v7O6V9w+aRqWa0AZRXOl2hA3lTNKGZZbTdqIpFhGnrWh0M/Vbj1QbpuSDHSc0FHggWcwItk66l73zXrniV/0Z0DIJclKBHPVe+bvbVyQVVFrCsTGdwE9smGFtGeF0UuqmhiaYjPCAdhyVWFATZrNXJ+jEKX0UK+1GWjRTf19kWBgzFpHbFNgOzaI3Ff/1IrGQbOOrMGMySS2VZB4cpxxZhaY9oD7TlFg+dgQTzdzviAyxxsS6tkqulGCxgmXSPKsGfjW4u6jUrvN6inAEx3AKAVxCDW6hDg0gMIBneIFX78l78969j/lqwctvDuEPvM8fQESUPg==
AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrsqaBm0sYxoHpAsYXYymwyZxzIzK4Q1n2CrvZ3Y+jO2fomTZAtNPHDhcM69nMuJEs6M9f0vr7Cyura+UdwsbW3v7O6V9w+aRqWa0AZRXOl2hA3lTNKGZZbTdqIpFhGnrWh0M/Vbj1QbpuSDHSc0FHggWcwItk66l73zXrniV/0Z0DIJclKBHPVe+bvbVyQVVFrCsTGdwE9smGFtGeF0UuqmhiaYjPCAdhyVWFATZrNXJ+jEKX0UK+1GWjRTf19kWBgzFpHbFNgOzaI3Ff/1IrGQbOOrMGMySS2VZB4cpxxZhaY9oD7TlFg+dgQTzdzviAyxxsS6tkqulGCxgmXSPKsGfjW4u6jUrvN6inAEx3AKAVxCDW6hDg0gMIBneIFX78l78969j/lqwctvDuEPvM8fQESUPg==
dn3
AAAB/nicdVDLSsNAFJ34rPVVdelmsAiuwiRtsd0V3bisYB/QhjCZTNqhk0mYmQglFPwFt7p3J279Fbd+idOHoEUPXDiccy/33hOknCmN0Ie1tr6xubVd2Cnu7u0fHJaOjjsqySShbZLwRPYCrChngrY105z2UklxHHDaDcbXM797T6ViibjTk5R6MR4KFjGCtZG6oZ8LvzL1S2VkNxqoWq1BZNeQ67p1Q1DFrTcc6NhojjJYouWXPgdhQrKYCk04VqrvoFR7OZaaEU6nxUGmaIrJGA9p31CBY6q8fH7uFJ4bJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuaUL4/h/+Tjms7yHZuq+Xm1TKeAjgFZ+ACOOASNMENaIE2IGAMHsETeLYerBfr1XpbtK5Zy5kT8AvW+xcFHJZq
AAAB/nicdVDLSsNAFJ34rPVVdelmsAiuwiRtsd0V3bisYB/QhjCZTNqhk0mYmQglFPwFt7p3J279Fbd+idOHoEUPXDiccy/33hOknCmN0Ie1tr6xubVd2Cnu7u0fHJaOjjsqySShbZLwRPYCrChngrY105z2UklxHHDaDcbXM797T6ViibjTk5R6MR4KFjGCtZG6oZ8LvzL1S2VkNxqoWq1BZNeQ67p1Q1DFrTcc6NhojjJYouWXPgdhQrKYCk04VqrvoFR7OZaaEU6nxUGmaIrJGA9p31CBY6q8fH7uFJ4bJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuaUL4/h/+Tjms7yHZuq+Xm1TKeAjgFZ+ACOOASNMENaIE2IGAMHsETeLYerBfr1XpbtK5Zy5kT8AvW+xcFHJZq
AAAB/nicdVDLSsNAFJ34rPVVdelmsAiuwiRtsd0V3bisYB/QhjCZTNqhk0mYmQglFPwFt7p3J279Fbd+idOHoEUPXDiccy/33hOknCmN0Ie1tr6xubVd2Cnu7u0fHJaOjjsqySShbZLwRPYCrChngrY105z2UklxHHDaDcbXM797T6ViibjTk5R6MR4KFjGCtZG6oZ8LvzL1S2VkNxqoWq1BZNeQ67p1Q1DFrTcc6NhojjJYouWXPgdhQrKYCk04VqrvoFR7OZaaEU6nxUGmaIrJGA9p31CBY6q8fH7uFJ4bJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuaUL4/h/+Tjms7yHZuq+Xm1TKeAjgFZ+ACOOASNMENaIE2IGAMHsETeLYerBfr1XpbtK5Zy5kT8AvW+xcFHJZq
AAAB/nicdVDLSsNAFJ34rPVVdelmsAiuwiRtsd0V3bisYB/QhjCZTNqhk0mYmQglFPwFt7p3J279Fbd+idOHoEUPXDiccy/33hOknCmN0Ie1tr6xubVd2Cnu7u0fHJaOjjsqySShbZLwRPYCrChngrY105z2UklxHHDaDcbXM797T6ViibjTk5R6MR4KFjGCtZG6oZ8LvzL1S2VkNxqoWq1BZNeQ67p1Q1DFrTcc6NhojjJYouWXPgdhQrKYCk04VqrvoFR7OZaaEU6nxUGmaIrJGA9p31CBY6q8fH7uFJ4bJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuaUL4/h/+Tjms7yHZuq+Xm1TKeAjgFZ+ACOOASNMENaIE2IGAMHsETeLYerBfr1XpbtK5Zy5kT8AvW+xcFHJZq
寸㹀加ךⰅ⸂瑞ⴓⶴ
寸㹀加ך♧菙⻉
x1
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
AAAB+nicbVDLSgMxFL1TX7W+qi7dBIvgqkxE0GXRjcuK9gHtUDJppg1NMkOSEcvYT3Cre3fi1p9x65eYtrPQ1gMXDufcy7mcMBHcWN//8gorq2vrG8XN0tb2zu5eef+gaeJUU9agsYh1OySGCa5Yw3IrWDvRjMhQsFY4up76rQemDY/VvR0nLJBkoHjEKbFOunvs4V654lf9GdAywTmpQI56r/zd7cc0lUxZKogxHewnNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN04pQ+imLtRlk0U39fZEQaM5ah25TEDs2iNxX/9UK5kGyjyyDjKkktU3QeHKUC2RhNe0B9rhm1YuwIoZq73xEdEk2odW2VXCl4sYJl0jyrYr+Kb88rtau8niIcwTGcAoYLqMEN1KEBFAbwDC/w6j15b9679zFfLXj5zSH8gff5A0z4lEY=
x2
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuykwRdFl047KifUA7lEyaaUOTzJBkxDL2E9zq3p249Wfc+iWm7Sy09cCFwzn3ci4nTAQ31vO+0Mrq2vrGZmGruL2zu7dfOjhsmjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWOrqd+64Fpw2N1b8cJCyQZKB5xSqyT7h571V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNLoOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk2a14nsV//a8XLvK6ynAMZzAGfhwATW4gTo0gMIAnuEFXtETekPv6GO+uoLymyP4A/T5A06MlEc=
n0
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubd8mS3b1jd08IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSq4sb7/5RVWVtfWN4qbpa3tnd298v5B0ySZZthgiUh0K6IGBVfYsNwKbKUaqYwEPkTD66n/8Ija8ETd21GKoaR9xWPOqHXSner63XLFr/ozkGUS5KQCOerd8nenl7BMorJMUGPagZ/acEy15UzgpNTJDKaUDWkf244qKtGE49mrE3LilB6JE+1GWTJTf1+MqTRmJCO3KakdmEVvKv7rRXIh2caX4ZirNLOo2Dw4zgSxCZn2QHpcI7Ni5AhlmrvfCRtQTZl1bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/O4iUOw==
dn0
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XPpr65QqyGw1UrdYgsmvIdd26IejCrTcc6NhojgpYouWXPwdhQrKYCk04VqrvoFR7OZaaEU6npUGmaIrJGA9p31CBY6q8fH7uFJ4ZJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuZUL4/h/+Tjms7yHZuq5Xm1TKeIjgBp+AcOOASNMENaIE2IGAMHsETeLYerBfr1XpbtBas5cwx+AXr/QsAXZZn
`5
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AI70lYk=
`6
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL2LXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d16pXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AJCIlYo=
n4
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWakoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSeui6ntV/65WqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AEHYlD8=
dn4
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSYxxXZXdOOygn1AG8JkMm2HTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+YcqY0Qh9WYW19Y3OruF3a2d3bPygfHrVVkklCWyThieyGWFHOBG1ppjntppLiOOS0E46vZ37nnkrFEnGnJyn1YzwUbMAI1kbqREEuAm8alCvIrteR51UhsqvIdd2aIejCrdUd6NhojgpYohmUP/tRQrKYCk04VqrnoFT7OZaaEU6npX6maIrJGA9pz1CBY6r8fH7uFJ4ZJYKDRJoSGs7VnxM5jpWaxKHpjLEeqVVvJv7phfHKZj2o+TkTaaapIIvFg4xDncBZFjBikhLNJ4ZgIpm5HZIRlphok1jJhPL9OfyftF3bQbZz61UaV8t4iuAEnIJz4IBL0AA3oAlagIAxeARP4Nl6sF6sV+tt0VqwljPH4Bes9y8GsZZr
n1
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
AAAB+nicbVA9SwNBFHwXv2L8ilraLAbBKtyJoGXQxjKiiYHkCHubvWTJ7t6x+04IMT/BVns7sfXP2PpL3CRXaOLAg2HmPeYxUSqFRd//8gorq2vrG8XN0tb2zu5eef+gaZPMMN5giUxMK6KWS6F5AwVK3koNpyqS/CEaXk/9h0durEj0PY5SHira1yIWjKKT7nQ36JYrftWfgSyTICcVyFHvlr87vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDx7dUJOnNIjcWLcaCQz9ffFmCprRypym4riwC56U/FfL1ILyRhfhmOh0wy5ZvPgOJMEEzLtgfSE4QzlyBHKjHC/EzaghjJ0bZVcKcFiBcukeVYN/Gpwe16pXeX1FOEIjuEUAriAGtxAHRrAoA/P8AKv3pP35r17H/PVgpffHMIfeJ8/PRyUPA==
dn1
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8XvjP1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcB8pZo
`1
AAAB/XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJJxkzM7vMzAphCf6CV717E69+i1e/xEmyB00saCiquqmmokRwY33/y1tZXVvf2CxsFbd3dvf2SweHDROnmmGdxSLWrYgaFFxh3XIrsJVopDIS2IxGN1O/+Yja8Fjd23GCoaQDxfucUeukRgeF6AbdUtmv+DOQZRLkpAw5at3Sd6cXs1SiskxQY9qBn9gwo9pyJnBS7KQGE8pGdIBtRxWVaMJs9u2EnDqlR/qxdqMsmam/LzIqjRnLyG1Kaodm0ZuK/3qRXEi2/asw4ypJLSo2D+6ngtiYTKsgPa6RWTF2hDLN3e+EDammzLrCiq6UYLGCZdI4rwR+Jbi7KFev83oKcAwncAYBXEIVbqEGdWDwAM/wAq/ek/fmvXsf89UVL785gj/wPn8AiKSVhQ==
AAAB/XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJJxkzM7vMzAphCf6CV717E69+i1e/xEmyB00saCiquqmmokRwY33/y1tZXVvf2CxsFbd3dvf2SweHDROnmmGdxSLWrYgaFFxh3XIrsJVopDIS2IxGN1O/+Yja8Fjd23GCoaQDxfucUeukRgeF6AbdUtmv+DOQZRLkpAw5at3Sd6cXs1SiskxQY9qBn9gwo9pyJnBS7KQGE8pGdIBtRxWVaMJs9u2EnDqlR/qxdqMsmam/LzIqjRnLyG1Kaodm0ZuK/3qRXEi2/asw4ypJLSo2D+6ngtiYTKsgPa6RWTF2hDLN3e+EDammzLrCiq6UYLGCZdI4rwR+Jbi7KFev83oKcAwncAYBXEIVbqEGdWDwAM/wAq/ek/fmvXsf89UVL785gj/wPn8AiKSVhQ==
AAAB/XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJJxkzM7vMzAphCf6CV717E69+i1e/xEmyB00saCiquqmmokRwY33/y1tZXVvf2CxsFbd3dvf2SweHDROnmmGdxSLWrYgaFFxh3XIrsJVopDIS2IxGN1O/+Yja8Fjd23GCoaQDxfucUeukRgeF6AbdUtmv+DOQZRLkpAw5at3Sd6cXs1SiskxQY9qBn9gwo9pyJnBS7KQGE8pGdIBtRxWVaMJs9u2EnDqlR/qxdqMsmam/LzIqjRnLyG1Kaodm0ZuK/3qRXEi2/asw4ypJLSo2D+6ngtiYTKsgPa6RWTF2hDLN3e+EDammzLrCiq6UYLGCZdI4rwR+Jbi7KFev83oKcAwncAYBXEIVbqEGdWDwAM/wAq/ek/fmvXsf89UVL785gj/wPn8AiKSVhQ==
AAAB/XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJJxkzM7vMzAphCf6CV717E69+i1e/xEmyB00saCiquqmmokRwY33/y1tZXVvf2CxsFbd3dvf2SweHDROnmmGdxSLWrYgaFFxh3XIrsJVopDIS2IxGN1O/+Yja8Fjd23GCoaQDxfucUeukRgeF6AbdUtmv+DOQZRLkpAw5at3Sd6cXs1SiskxQY9qBn9gwo9pyJnBS7KQGE8pGdIBtRxWVaMJs9u2EnDqlR/qxdqMsmam/LzIqjRnLyG1Kaodm0ZuK/3qRXEi2/asw4ypJLSo2D+6ngtiYTKsgPa6RWTF2hDLN3e+EDammzLrCiq6UYLGCZdI4rwR+Jbi7KFev83oKcAwncAYBXEIVbqEGdWDwAM/wAq/ek/fmvXsf89UVL785gj/wPn8AiKSVhQ==
`2
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukVat6btW7u6jUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/ijiVhg==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukVat6btW7u6jUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/ijiVhg==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukVat6btW7u6jUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/ijiVhg==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukVat6btW7u6jUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/ijiVhg==
n2
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWaKoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSatW9b2qf3dRqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AD6wlD0=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWaKoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSatW9b2qf3dRqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AD6wlD0=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWaKoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSatW9b2qf3dRqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AD6wlD0=
AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWaKoMuiG5cV7QPaoWTSTBuaZIYkI5Sxn+BW9+7ErT/j1i8xbWehrQcuHM65l3M5YSK4sZ73hQpr6xubW8Xt0s7u3v5B+fCoZeJUU9aksYh1JySGCa5Y03IrWCfRjMhQsHY4vpn57UemDY/Vg50kLJBkqHjEKbFOulf9Wr9c8areHHiV+DmpQI5Gv/zdG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzV6f4zCkDHMXajbJ4rv6+yIg0ZiJDtymJHZllbyb+64VyKdlGV0HGVZJapugiOEoFtjGe9YAHXDNqxcQRQjV3v2M6IppQ69oquVL85QpWSatW9b2qf3dRqV/n9RThBE7hHHy4hDrcQgOaQGEIz/ACr+gJvaF39LFYLaD85hj+AH3+AD6wlD0=
dn2
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8Xvjv1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcDh5Zp
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8Xvjv1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcDh5Zp
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8Xvjv1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcDh5Zp
AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwFSaxxXZXdOOygn1AG8JkMmmHTiZhZiKUUPAX3Orenbj1V9z6JU4fghY9cOFwzr3ce0+QcqY0Qh9WYW19Y3OruF3a2d3bPygfHnVUkklC2yThiewFWFHOBG1rpjntpZLiOOC0G4yvZ373nkrFEnGnJyn1YjwULGIEayN1Qz8Xvjv1yxVkNxqoWq1BZNeQ67p1Q9CFW2840LHRHBWwRMsvfw7ChGQxFZpwrFTfQan2ciw1I5xOS4NM0RSTMR7SvqECx1R5+fzcKTwzSgijRJoSGs7VnxM5jpWaxIHpjLEeqVVvJv7pBfHKZh3VvZyJNNNUkMXiKONQJ3CWBQyZpETziSGYSGZuh2SEJSbaJFYyoXx/Dv8nHdd2kO3cVivNq2U8RXACTsE5cMAlaIIb0AJtQMAYPIIn8Gw9WC/Wq/W2aC1Yy5lj8AvW+xcDh5Zp
`3
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL3zXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d1GpXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AIvMlYc=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL3zXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d1GpXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AIvMlYc=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL3zXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d1GpXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AIvMlYc=
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOepMxM7vLzKwQluAveNW7N/Hqt3j1S5wke9DEgoaiqptqKkgE18Z1v5zCyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ARNgw3AtuJQioDga1gdDP1W4+oNI+jezNO0Jd0EPGQM2qs1OyiEL3zXrniVt0ZyDLxclKBHPVe+bvbj1kqMTJMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsjKlH72ezbCTmxSp+EsbITGTJTf19kVGo9loHdlNQM9aI3Ff/1ArmQbMIrP+NRkhqM2Dw4TAUxMZlWQfpcITNibAllitvfCRtSRZmxhZVsKd5iBcukeVb13Kp3d1GpXef1FOEIjuEUPLiEGtxCHRrA4AGe4QVenSfnzXl3PuarBSe/OYQ/cD5/AIvMlYc=
`4
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukdVH13Kp3V6vUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/jWCViA==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukdVH13Kp3V6vUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/jWCViA==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukdVH13Kp3V6vUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/jWCViA==
AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI9BLx4jmAckS5id9CZjZmeXmVkhLMFf8Kp3b+LVb/HqlzhJ9qCJBQ1FVTfVVJAIro3rfjmFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmtx9RaR7LezNJ0I/oUPKQM2qs1OqhEP1av1xxq+4cZJV4OalAjka//N0bxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bP7tlJxZZUDCWNmRhszV3xcZjbSeRIHdjKgZ6WVvJv7rBdFSsgmv/IzLJDUo2SI4TAUxMZlVQQZcITNiYgllitvfCRtRRZmxhZVsKd5yBaukdVH13Kp3V6vUr/N6inACp3AOHlxCHW6hAU1g8ADP8AKvzpPz5rw7H4vVgpPfHMMfOJ8/jWCViA==
n3
AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrsqaBm0sYxoHpAsYXYymwyZxzIzK4Q1n2CrvZ3Y+jO2fomTZAtNPHDhcM69nMuJEs6M9f0vr7Cyura+UdwsbW3v7O6V9w+aRqWa0AZRXOl2hA3lTNKGZZbTdqIpFhGnrWh0M/Vbj1QbpuSDHSc0FHggWcwItk66l73zXrniV/0Z0DIJclKBHPVe+bvbVyQVVFrCsTGdwE9smGFtGeF0UuqmhiaYjPCAdhyVWFATZrNXJ+jEKX0UK+1GWjRTf19kWBgzFpHbFNgOzaI3Ff/1IrGQbOOrMGMySS2VZB4cpxxZhaY9oD7TlFg+dgQTzdzviAyxxsS6tkqulGCxgmXSPKsGfjW4u6jUrvN6inAEx3AKAVxCDW6hDg0gMIBneIFX78l78969j/lqwctvDuEPvM8fQESUPg==
AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrsqaBm0sYxoHpAsYXYymwyZxzIzK4Q1n2CrvZ3Y+jO2fomTZAtNPHDhcM69nMuJEs6M9f0vr7Cyura+UdwsbW3v7O6V9w+aRqWa0AZRXOl2hA3lTNKGZZbTdqIpFhGnrWh0M/Vbj1QbpuSDHSc0FHggWcwItk66l73zXrniV/0Z0DIJclKBHPVe+bvbVyQVVFrCsTGdwE9smGFtGeF0UuqmhiaYjPCAdhyVWFATZrNXJ+jEKX0UK+1GWjRTf19kWBgzFpHbFNgOzaI3Ff/1IrGQbOOrMGMySS2VZB4cpxxZhaY9oD7TlFg+dgQTzdzviAyxxsS6tkqulGCxgmXSPKsGfjW4u6jUrvN6inAEx3AKAVxCDW6hDg0gMIBneIFX78l78969j/lqwctvDuEPvM8fQESUPg==
AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrsqaBm0sYxoHpAsYXYymwyZxzIzK4Q1n2CrvZ3Y+jO2fomTZAtNPHDhcM69nMuJEs6M9f0vr7Cyura+UdwsbW3v7O6V9w+aRqWa0AZRXOl2hA3lTNKGZZbTdqIpFhGnrWh0M/Vbj1QbpuSDHSc0FHggWcwItk66l73zXrniV/0Z0DIJclKBHPVe+bvbVyQVVFrCsTGdwE9smGFtGeF0UuqmhiaYjPCAdhyVWFATZrNXJ+jEKX0UK+1GWjRTf19kWBgzFpHbFNgOzaI3Ff/1IrGQbOOrMGMySS2VZB4cpxxZhaY9oD7TlFg+dgQTzdzviAyxxsS6tkqulGCxgmXSPKsGfjW4u6jUrvN6inAEx3AKAVxCDW6hDg0gMIBneIFX78l78969j/lqwctvDuEPvM8fQESUPg==
AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrsqaBm0sYxoHpAsYXYymwyZxzIzK4Q1n2CrvZ3Y+jO2fomTZAtNPHDhcM69nMuJEs6M9f0vr7Cyura+UdwsbW3v7O6V9w+aRqWa0AZRXOl2hA3lTNKGZZbTdqIpFhGnrWh0M/Vbj1QbpuSDHSc0FHggWcwItk66l73zXrniV/0Z0DIJclKBHPVe+bvbVyQVVFrCsTGdwE9smGFtGeF0UuqmhiaYjPCAdhyVWFATZrNXJ+jEKX0UK+1GWjRTf19kWBgzFpHbFNgOzaI3Ff/1IrGQbOOrMGMySS2VZB4cpxxZhaY9oD7TlFg+dgQTzdzviAyxxsS6tkqulGCxgmXSPKsGfjW4u6jUrvN6inAEx3AKAVxCDW6hDg0gMIBneIFX78l78969j/lqwctvDuEPvM8fQESUPg==
dn3
AAAB/nicdVDLSsNAFJ34rPVVdelmsAiuwiRtsd0V3bisYB/QhjCZTNqhk0mYmQglFPwFt7p3J279Fbd+idOHoEUPXDiccy/33hOknCmN0Ie1tr6xubVd2Cnu7u0fHJaOjjsqySShbZLwRPYCrChngrY105z2UklxHHDaDcbXM797T6ViibjTk5R6MR4KFjGCtZG6oZ8LvzL1S2VkNxqoWq1BZNeQ67p1Q1DFrTcc6NhojjJYouWXPgdhQrKYCk04VqrvoFR7OZaaEU6nxUGmaIrJGA9p31CBY6q8fH7uFJ4bJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuaUL4/h/+Tjms7yHZuq+Xm1TKeAjgFZ+ACOOASNMENaIE2IGAMHsETeLYerBfr1XpbtK5Zy5kT8AvW+xcFHJZq
AAAB/nicdVDLSsNAFJ34rPVVdelmsAiuwiRtsd0V3bisYB/QhjCZTNqhk0mYmQglFPwFt7p3J279Fbd+idOHoEUPXDiccy/33hOknCmN0Ie1tr6xubVd2Cnu7u0fHJaOjjsqySShbZLwRPYCrChngrY105z2UklxHHDaDcbXM797T6ViibjTk5R6MR4KFjGCtZG6oZ8LvzL1S2VkNxqoWq1BZNeQ67p1Q1DFrTcc6NhojjJYouWXPgdhQrKYCk04VqrvoFR7OZaaEU6nxUGmaIrJGA9p31CBY6q8fH7uFJ4bJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuaUL4/h/+Tjms7yHZuq+Xm1TKeAjgFZ+ACOOASNMENaIE2IGAMHsETeLYerBfr1XpbtK5Zy5kT8AvW+xcFHJZq
AAAB/nicdVDLSsNAFJ34rPVVdelmsAiuwiRtsd0V3bisYB/QhjCZTNqhk0mYmQglFPwFt7p3J279Fbd+idOHoEUPXDiccy/33hOknCmN0Ie1tr6xubVd2Cnu7u0fHJaOjjsqySShbZLwRPYCrChngrY105z2UklxHHDaDcbXM797T6ViibjTk5R6MR4KFjGCtZG6oZ8LvzL1S2VkNxqoWq1BZNeQ67p1Q1DFrTcc6NhojjJYouWXPgdhQrKYCk04VqrvoFR7OZaaEU6nxUGmaIrJGA9p31CBY6q8fH7uFJ4bJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuaUL4/h/+Tjms7yHZuq+Xm1TKeAjgFZ+ACOOASNMENaIE2IGAMHsETeLYerBfr1XpbtK5Zy5kT8AvW+xcFHJZq
AAAB/nicdVDLSsNAFJ34rPVVdelmsAiuwiRtsd0V3bisYB/QhjCZTNqhk0mYmQglFPwFt7p3J279Fbd+idOHoEUPXDiccy/33hOknCmN0Ie1tr6xubVd2Cnu7u0fHJaOjjsqySShbZLwRPYCrChngrY105z2UklxHHDaDcbXM797T6ViibjTk5R6MR4KFjGCtZG6oZ8LvzL1S2VkNxqoWq1BZNeQ67p1Q1DFrTcc6NhojjJYouWXPgdhQrKYCk04VqrvoFR7OZaaEU6nxUGmaIrJGA9p31CBY6q8fH7uFJ4bJYRRIk0JDefqz4kcx0pN4sB0xliP1Ko3E//0gnhls47qXs5EmmkqyGJxlHGoEzjLAoZMUqL5xBBMJDO3QzLCEhNtEiuaUL4/h/+Tjms7yHZuq+Xm1TKeAjgFZ+ACOOASNMENaIE2IGAMHsETeLYerBfr1XpbtK5Zy5kT8AvW+xcFHJZq
ぐ걄㚖ד荈歋חխխխ㷕统
AAACq3ichVE9S8NQFD2N35+tugguxVKpg/IiguJUdHGs1rZilZLE1xqbL5K0WKt/wMlN1EnBQfwZLv0DDv0J4qjg4uBNGhAtrTck77xz77nvvFzZ0lTHZawZEnp6+/oHBoeGR0bHxsORicmsY1ZshWcUUzPtXVlyuKYaPOOqrsZ3LZtLuqzxnFze8PK5Krcd1TR23JrFD3SpZKhFVZFcorKpRO3sZL4QibFF5ke0HYgBiCGIlBlpYB+HMKGgAh0cBlzCGiQ49OQhgsEi7gB14mxCqp/nOMcwaStUxalCIrZM3xLt8gFr0N7r6fhqhU7R6LVJGUWcvbBH9s4a7Im9sq+Ovep+D89LjVa5peVWIXwxnf78V6XT6uLoR9XVs4siVn2vKnm3fMa7hdLSV0+v3tNr2/H6HLtnb+T/jjXZM93AqH4oD1t8+7aLH5m8dP5jXj6ooBGKfwfWDrJLiyLhreVYcj0Y5iBmMIsETWwFSWwihQydcIxLXONGWBDSwp6w3yoVQoFmCr9C4N89C5ka
寸㹀加ךⰅ⸂瑞ⴓⶴ
■ OC1/Oblique Tree (Murthy+ 1994)
■ Perceptron Tree (Utgoff , 1988)
■ Large Margin Tree (Wu+ 1999; Bennett+ 2000)
■ Margin Tree (Tibshirani & Hastie 2007)
■ Geometric Decision Tree (Manwani & Sastry,
2012)
■ HHCART (Wickramarachchi+, 2016)
■ M5/M5’ (Quinlan, 1992; Wang & Witten 1997)
■ RETIS (Karalic & Cestnik 1991)
■ SECRET (Dobra & Gehrke, 2002)
■ SMOTI (Malerba+ 2004)
■ MAUVE (Vens & Blockeel, 2006)
■ LLRT (Vogel, Asparouhov, Scheffer, 2007)
■ Cubist (Quinlan, 2011)
AAAClnichVHLSsNAFD3Gd3201Y3gplgqrmQiguJCiiK6rNZqoZWQxLEdmiYxmVa0+AP+gAtxoaAifoAf4MYfcOEniEsFNy68TQOiot4wmTNn7rlzZq7hWsKXjD22Ke0dnV3dPb2Rvv6BwWgsPrThOzXP5DnTsRwvb+g+t4TNc1JIi+ddj+tVw+KbRmWxub9Z554vHHtd7rt8q6qXbLEjTF0SpcXieU0kiiW+myjKMpe6pmqxJJtkQSR+AjUESYSRcWK3KGIbDkzUUAWHDUnYgg6fvgJUMLjEbaFBnEdIBPsch4iQtkZZnDJ0Yiv0L9GqELI2rZs1/UBt0ikWDY+UCaTYA7tmL+ye3bAn9v5rrUZQo+lln2ajpeWuFj0ayb79q6rSLFH+VP3pWWIHs4FXQd7dgGnewmzp6wfHL9m5tVRjnJ2zZ/J/xh7ZHd3Arr+aF6t87eQPPwZ5oRejBqnf2/ETbExNqoRXp5PphbBVPRjFGCaoHzNIYwUZ5Kj+Hk5xiStlRJlXlpTlVqrSFmqG8SWUzAedy5ZD
AAAClnichVHLSsNAFD2Nr/psq5uCm2BRXMlEBMWFFEV02VarBSshiWONTZOYTCu1+AP+gAtxoaAifoAf4MYfcOEniEsFNy68TQOiot4wmTNn7rlzZq7uWqYvGHuMSG3tHZ1d0e6e3r7+gVg8MbjmO1XP4HnDsRyvoGs+t0yb54UpLF5wPa5VdIuv6+WF5v56jXu+6dirou7yzYpWss1t09AEUWo8UVB35WKJ78lFscOFpk6q8RSbYEHIP4ESghTCyDjxWxSxBQcGqqiAw4YgbEGDT98GFDC4xG2iQZxHyAz2OQ7RQ9oqZXHK0Igt079Eq42QtWndrOkHaoNOsWh4pJQxyh7YNXth9+yGPbH3X2s1ghpNL3Wa9ZaWu2rsKLny9q+qQrPAzqfqT88C25gJvJrk3Q2Y5i2Mlr52cPyyMpsbbYyxc/ZM/s/YI7ujG9i1V+Miy3Mnf/jRyQu9GDVI+d6On2BtckIhnJ1KpefDVkUxjBGMUz+mkcYyMshT/X2c4hJXUlKakxalpVaqFAk1Q/gSUuYDohmWRQ==
AAAClnichVHLSsNAFD3Gd3201Y3gplgqrmSqguJCRBFd1mof0JaQxLENTZOYTCta/AF/wIW4UFARP8APcOMPuPATxGUFNy68TQOixXrDZM6cuefOmbmqbeiuYOylS+ru6e3rHxgMDA2PjAZD4bG0a1Udjac0y7CcrKq43NBNnhK6MHjWdrhSUQ2eUcvrzf1MjTuubpm74sjmhYpSNPV9XVMEUXIonJXLkXyRH0TyosSFIs/LoSibZV5E2kHcB1H4kbBCD8hjDxY0VFEBhwlB2IACl74c4mCwiSugTpxDSPf2OU4QIG2VsjhlKMSW6V+kVc5nTVo3a7qeWqNTDBoOKSOIsWd2xxrsid2zV/b5Z626V6Pp5YhmtaXlthw8ndj5+FdVoVmg9K3q6FlgH0ueV5282x7TvIXW0teOzxo7y8lYfZpdsTfyf8le2CPdwKy9a9fbPHnewY9KXujFqEHx3+1oB+m52Tjh7YXo6prfqgFMYgoz1I9FrGILCaSo/iEucINbaUJakTakzVaq1OVrxvEjpMQXpmeWRw==
AAAClnichVHLSsNAFD2Nr1pfrW4EN8VScSVTKSgupCiiy1atLbQlJHFsg2kSk2lFiz/gD7gQFwoq4gf4AW78ARf9BHGp4MaFt2lAtFhvmMyZM/fcOTNXtQ3dFYw1A1JPb1//QHAwNDQ8MjoWjozvuFbN0XhWswzLyauKyw3d5FmhC4PnbYcrVdXgOXV/tbWfq3PH1S1zWxzZvFRVyqa+p2uKIEoOR/KyES2W+UG0KCpcKHJSDsfYHPMi2gkSPojBj7QVfkARu7CgoYYqOEwIwgYUuPQVkACDTVwJDeIcQrq3z3GCEGlrlMUpQyF2n/5lWhV81qR1q6brqTU6xaDhkDKKOHtmd+yNPbF79sI+/6zV8Gq0vBzRrLa13JbHTie3Pv5VVWkWqHyrunoW2MOi51Un77bHtG6htfX147O3raXNeGOGXbFX8n/JmuyRbmDW37XrDN887+JHJS/0YtSgxO92dIKd+bkE4UwyllrxWxXEFKYxS/1YQAobSCNL9Q9xgRvcSpPSsrQmrbdTpYCvmcCPkNJfqrWWSQ==
AAACmnichVHLSsNAFD3Gd31VRRB0USxVQZCJCIorqRvFjVprC1pCEqc1mBfJtKDBH/AHXLiq4EL7AX6AG3/AhZ8gLiu4ceFtGhAt1hsmc+bMPXfOzNVc0/AFYy8dUmdXd09vX39sYHBoeCQ+OnbgO2VP51ndMR0vr6k+Nw2bZ4UhTJ53Pa5amslz2ulGYz9X4Z5vOPa+OHN5wVJLtlE0dFUQpcQncoo8lzjSrCB/kVggwIWqyEo8yRZZGIlWIEcgiSh2nPgDjnAMBzrKsMBhQxA2ocKn7xAyGFziCgiI8wgZ4T7HBWKkLVMWpwyV2FP6l2h1GLE2rRs1/VCt0ykmDY+UCaTYM7tjdfbEauyVff5ZKwhrNLyc0aw1tdxVRi4nMx//qiyaBU6+VW09CxSxGno1yLsbMo1b6E195fyqnlnbSwWz7Ia9kf8qe2GPdAO78q7f7vK96zZ+NPJCL0YNkn+3oxUcLC3KhHeXk+vpqFV9mMIM5qkfK1jHJnaQpfoBqrhHTZqW0tKWtN1MlToizTh+hLT/BZu5lww=
AAACmnichVHLSsNAFD3G97NVEQRdFIsPEMpUBcVVqRvFTVutLVQJSZzW0LxIpgUN/oA/4MKVggv1A/wAN/6Ai36CuFRw48LbNCBa1Bsmc+bMPXfOzFUdQ/cEY40OqbOru6e3r39gcGh4JBIdHdvz7Jqr8bxmG7ZbVBWPG7rF80IXBi86LldM1eAFtbrR3C/UuevptrUrjh1+YCoVSy/rmiKIkqMTBXl5Pravmn7xNLZIgAtFXpajcZZgQcTaQTIEcYSRsaP32MchbGiowQSHBUHYgAKPvhKSYHCIO4BPnEtID/Y5TjFA2hplccpQiK3Sv0KrUshatG7W9AK1RqcYNFxSxjDLntgNe2WP7I49s49fa/lBjaaXY5rVlpY7cuRscuf9X5VJs8DRl+pPzwJlrAVedfLuBEzzFlpLXz85f91Zz836c+yKvZD/S9ZgD3QDq/6mXWd57uIPPyp5oRejBiV/tqMd7C0lkoSzK/FUOmxVH6YwgwXqxypS2EQGearv4xK3uJOmpbS0JW23UqWOUDOObyHtfgKkXZcQ
AAACmnichVHLSsNAFD2N7/qqiiDoolh8gFCmRVBciW4UN9W2tqASkjitwbxIpgUN/oA/4MJVBRfaD/AD3PgDLvoJ4lLBjQtv04Bosd4wmTNn7rlzZq7qGLonGGtEpK7unt6+/oHo4NDwyGhsbHzfsyuuxvOabdhuUVU8bugWzwtdGLzouFwxVYMX1NPN5n6hyl1Pt62cOHP4kamULb2ka4ogSo5NFuT0QvxQNf3iRXyJABeKnJZjCZZkQcTbQSoECYSRsWMPOMQxbGiowASHBUHYgAKPvgOkwOAQdwSfOJeQHuxzXCBK2gplccpQiD2lf5lWByFr0bpZ0wvUGp1i0HBJGccce2Z37I09sTp7YZ9/1vKDGk0vZzSrLS135NHLqezHvyqTZoGTb1VHzwIlrAZedfLuBEzzFlpLXz2/esuu7c358+yGvZL/GmuwR7qBVX3Xbnf53nUHPyp5oRejBqV+t6Md7KeTKcK7y4n1jbBV/ZjGLBapHytYxxYyyFN9HzXcoy7NSBvStrTTSpUioWYCP0LKfQGgC5cO
AAACmnichVHLSsNAFD2N7/qqiiDoolh8gFCmUlBciW4UN9W2tqASkjitwbxIpgUN/oA/4MJVBRfaD/AD3PgDLvoJ4lLBjQtv04Bosd4wmTNn7rlzZq7qGLonGGtEpK7unt6+/oHo4NDwyGhsbHzfsyuuxvOabdhuUVU8bugWzwtdGLzouFwxVYMX1NPN5n6hyl1Pt62cOHP4kamULb2ka4ogSo5NFuT0QvxQNf3iRXyJABeKnJZjCZZkQcTbQSoECYSRsWMPOMQxbGiowASHBUHYgAKPvgOkwOAQdwSfOJeQHuxzXCBK2gplccpQiD2lf5lWByFr0bpZ0wvUGp1i0HBJGccce2Z37I09sTp7YZ9/1vKDGk0vZzSrLS135NHLqezHvyqTZoGTb1VHzwIlrAZedfLuBEzzFlpLXz2/esuu7c358+yGvZL/GmuwR7qBVX3Xbnf53nUHPyp5oRejBqV+t6Md7C8nU4R304n1jbBV/ZjGLBapHytYxxYyyFN9HzXcoy7NSBvStrTTSpUioWYCP0LKfQGor5cS
AAACmnichVHLSsNAFD3G97NVEQRdFIsPEMpUFMVVqRvFTVutLVQJSZzW0LxIpgUN/oA/4MKVggv1A/wAN/6Ai36CuFRw48LbNCBa1Bsmc+bMPXfOzFUdQ/cEY40OqbOru6e3r39gcGh4JBIdHdvz7Jqr8bxmG7ZbVBWPG7rF80IXBi86LldM1eAFtbrR3C/UuevptrUrjh1+YCoVSy/rmiKIkqMTBXllPravmn7xNLZIgAtFXpGjcZZgQcTaQTIEcYSRsaP32MchbGiowQSHBUHYgAKPvhKSYHCIO4BPnEtID/Y5TjFA2hplccpQiK3Sv0KrUshatG7W9AK1RqcYNFxSxjDLntgNe2WP7I49s49fa/lBjaaXY5rVlpY7cuRscuf9X5VJs8DRl+pPzwJlrAVedfLuBEzzFlpLXz85f91Zz836c+yKvZD/S9ZgD3QDq/6mXWd57uIPPyp5oRejBiV/tqMd7C0lkoSzy/FUOmxVH6YwgwXqxypS2EQGearv4xK3uJOmpbS0JW23UqWOUDOObyHtfgKtAZcU
AAACnnichVG7SgNBFD2u7/hI1EaxWQw+qjArgmIlCmIjGjUmYGTZXSfJkn25OwloEHt/wMJKwUIELf0AG3/Awk8QSwUbC282C6JivMvsnDlzz50zc3XPMgPB2FOL1NrW3tHZ1R3r6e3rjycGBrcDt+IbPGO4luvndC3glunwjDCFxXOezzVbt3hWLy/V97NV7gem62yJA4/v2lrRMQumoQmi1MRIVlUm5bxu13JHcr7I9+W8KHGhqYqaSLIUC0P+DZQIJBHFupu4Qx57cGGgAhscDgRhCxoC+naggMEjbhc14nxCZrjPcYQYaSuUxSlDI7ZM/yKtdiLWoXW9ZhCqDTrFouGTUsY4e2RX7JU9sGv2zD7+rFULa9S9HNCsN7TcU+Mnw5vv/6psmgVKX6qmngUKmAu9muTdC5n6LYyGvnp4+ro5vzFem2AX7IX8n7Mndk83cKpvxmWab5w18aOTF3oxapDysx2/wfZ0SiGcnkkuLEat6sIoxjBF/ZjFAlawjgzVP8YlbnArydKytCqtNVKllkgzhG8h5T4BYfKZHA==
AAACnnichVG7SgNBFD2u72eiNorNYvBRyWwQFCtREBvxmQcksuyuk2RxX+5OAhrE3h+wsFKwEEFLP8DGH7DIJ4hlBBsLbzYLoqLeZXbOnLnnzpm5umeZgWCs1iK1trV3dHZ19/T29Q/E4oND6cAt+wZPGa7l+lldC7hlOjwlTGHxrOdzzdYtntH3lxv7mQr3A9N1dsShx3dtreiYBdPQBFFqfDSjJqfkvG5Xs8dyvsgP5LwocaGpSTWeYDMsDPknUCKQQBQbbvweeezBhYEybHA4EIQtaAjoy0EBg0fcLqrE+YTMcJ/jGD2kLVMWpwyN2H36F2mVi1iH1o2aQag26BSLhk9KGRPsiV2zOntkN+yZvf9aqxrWaHg5pFlvarmnxk5Htt/+Vdk0C5Q+VX96FihgPvRqkncvZBq3MJr6ytFZfXtha6I6yS7ZC/m/YDX2QDdwKq/G1SbfOv/Dj05e6MWoQcr3dvwE6eSMQnhzNrG4FLWqC2MYxzT1Yw6LWMUGUlT/BFe4xZ0kSyvSmrTeTJVaIs0wvoSU/QBmSJke
AAACnnichVG7SgNBFD2u7/iK2ig2i8FHFSZGUKxEQWzEZ0zAhGV3ncQl+3J3EtAg9v6AhZVCChG09ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7mm4QvGnluk1rb2js6u7khPb1//QHRwaNd3Sp7OU7pjOl5GU31uGjZPCUOYPON6XLU0k6e14nJtP13mnm849o44cnnOUgu2kTd0VRClREfTSnJKzmpWJXMiZwv8UM6KAy5UJalEYyzOgpAbQSIEMYSx4UTvkcU+HOgowQKHDUHYhAqfvj0kwOASl0OFOI+QEexznCBC2hJlccpQiS3Sv0CrvZC1aV2r6QdqnU4xaXiklDHBntg1e2OP7Ia9sM8/a1WCGjUvRzRrdS13lYGzke2Pf1UWzQIH36qmngXymA+8GuTdDZjaLfS6vnx8/ra9sDVRmWRX7JX8X7Jn9kA3sMvvenWTb1008aORF3oxalDidzsawe5MPEF4cza2uBS2qgtjGMc09WMOi1jFBlJU/xRV3OJOkqUVaU1ar6dKLaFmGD9CynwBap6ZIA==
AAACnnichVG7SgNBFD1Z389EbRSbxeCjkokEFCtREBvRJOYBiSy76yRZ3Je7k4AGsfcHLKwULETQ0g+w8Qcs/ASxVLCx8GazICrqXWbnzJl77pyZq7mm4QvGHiNSW3tHZ1d3T29f/8BgNDY0nPOdmqfzrO6YjlfQVJ+bhs2zwhAmL7geVy3N5Hltd6W5n69zzzcce0vsu3zbUiu2UTZ0VRClxMbySnJaLmlWo3Aolyp8Ty6JKheqklRicTbLgpB/gkQI4ghj04ndooQdONBRgwUOG4KwCRU+fUUkwOASt40GcR4hI9jnOEQvaWuUxSlDJXaX/hVaFUPWpnWzph+odTrFpOGRUsYke2CX7IXdsyv2xN5/rdUIajS97NOstbTcVaLHo5m3f1UWzQLVT9WfngXKWAi8GuTdDZjmLfSWvn5w8pJZTE82ptg5eyb/Z+yR3dEN7PqrfpHi6dM//GjkhV6MGpT43o6fIDc3myCcSsaXlsNWdWMcE5ihfsxjCWvYRJbqH+EC17iRZGlVWpc2WqlSJNSM4EtIhQ9u9Jki
AAAChnichVG7SgNBFD1ZXzE+ErURbIIhYhVmRYlYBW0s8zAPiCHsrpO4ZF/sbgIx+AOCrSmsFCzED/ADbPwBi3yCWEawsfBmsyAajHeZnTNn7rlzZq5saarjMtYLCBOTU9MzwdnQ3PzCYjiytFxwzKat8LxiaqZdkiWHa6rB867qarxk2VzSZY0X5cbBYL/Y4rajmsaR27Z4RZfqhlpTFcklKqdUxWokxhLMi+goEH0Qgx9pM/KIY5zAhIImdHAYcAlrkODQV4YIBou4CjrE2YRUb5/jHCHSNimLU4ZEbIP+dVqVfdag9aCm46kVOkWjYZMyijh7Yfesz57ZA3tln3/W6ng1Bl7aNMtDLbeq4YvV3Me/Kp1mF6ffqrGeXdSw63lVybvlMYNbKEN966zbz+1l450NdsveyP8N67EnuoHRelfuMjx7PcaPTF7oxahB4u92jILCVkIknNmOpfb9VgWxhnVsUj+SSOEQaeSpfh2XuEJXCAoJYUdIDlOFgK9ZwY8QUl8k/JB+
AAAChnichVG7SgNBFD1ZXzE+ErURbIIhYhUmQYlYBW0s8zAPiCHsrmNcsi92N4EY/AHB1hRWChbiB/gBNv6ART5BLCPYWHh3syAajHeZnTNn7rlzZq5kqortMNYPCBOTU9MzwdnQ3PzCYjiytFyyjZYl86JsqIZVkUSbq4rOi47iqLxiWlzUJJWXpea+u19uc8tWDP3Q6Zi8pokNXTlRZNEhqiDXU/VIjCWYF9FRkPRBDH5kjcgjjnAMAzJa0MChwyGsQoRNXxVJMJjE1dAlziKkePsc5wiRtkVZnDJEYpv0b9Cq6rM6rd2atqeW6RSVhkXKKOLshd2zAXtmD+yVff5Zq+vVcL10aJaGWm7WwxerhY9/VRrNDk6/VWM9OzjBjudVIe+mx7i3kIf69llvUNjNx7sb7Ja9kf8b1mdPdAO9/S7f5Xj+eowfibzQi1GDkr/bMQpKqUSScG4rltnzWxXEGtaxSf1II4MDZFGk+g1c4go9ISgkhG0hPUwVAr5mBT9CyHwBJxyQfw==
AAAChnichVG7SgNBFD1ZXzE+ErURbIIhYhUmPohYBW0s8zAPiCHsrmNcsi92N4EY/AHB1hRWChbiB/gBNv6ART5BLCPYWHh3syAajHeZnTNn7rlzZq5kqortMNYLCGPjE5NTwenQzOzcfDiysFi0jaYl84JsqIZVlkSbq4rOC47iqLxsWlzUJJWXpMa+u19qcctWDP3QaZu8qol1XTlRZNEhKi/XNmuRGEswL6LDIOmDGPzIGJFHHOEYBmQ0oYFDh0NYhQibvgqSYDCJq6JDnEVI8fY5zhEibZOyOGWIxDboX6dVxWd1Wrs1bU8t0ykqDYuUUcTZC7tnffbMHtgr+/yzVser4Xpp0ywNtNyshS+W8x//qjSaHZx+q0Z6dnCCHc+rQt5Nj3FvIQ/0rbNuP7+bi3fW2C17I/83rMee6AZ6612+y/Lc9Qg/EnmhF6MGJX+3YxgUNxJJwtmtWHrPb1UQK1jFOvUjhTQOkEGB6tdxiSt0haCQELaF1CBVCPiaJfwIIf0FKTyQgA==
AAAChnichVG7SgNBFD1ZXzE+ErURbIIhYhUmEolYBW0s8zAPiCHsrmNcsi92N4EY/AHB1hRWChbiB/gBNv6ART5BLCPYWHh3syAajHeZnTNn7rlzZq5kqortMNYPCBOTU9MzwdnQ3PzCYjiytFyyjZYl86JsqIZVkUSbq4rOi47iqLxiWlzUJJWXpea+u19uc8tWDP3Q6Zi8pokNXTlRZNEhqiDXU/VIjCWYF9FRkPRBDH5kjcgjjnAMAzJa0MChwyGsQoRNXxVJMJjE1dAlziKkePsc5wiRtkVZnDJEYpv0b9Cq6rM6rd2atqeW6RSVhkXKKOLshd2zAXtmD+yVff5Zq+vVcL10aJaGWm7WwxerhY9/VRrNDk6/VWM9OzjBjudVIe+mx7i3kIf69llvUNjNx7sb7Ja9kf8b1mdPdAO9/S7f5Xj+eowfibzQi1GDkr/bMQpKW4kk4VwqltnzWxXEGtaxSf1II4MDZFGk+g1c4go9ISgkhG0hPUwVAr5mBT9CyHwBK1yQgQ==
AAAChnichVG7SgNBFD1ZXzE+ErURbIIhYhUmYohYBW0s8zAPiCHsrmNcsi92N4EY/AHB1hRWChbiB/gBNv6ART5BLCPYWHh3syAajHeZnTNn7rlzZq5kqortMNYPCBOTU9MzwdnQ3PzCYjiytFyyjZYl86JsqIZVkUSbq4rOi47iqLxiWlzUJJWXpea+u19uc8tWDP3Q6Zi8pokNXTlRZNEhqiDXU/VIjCWYF9FRkPRBDH5kjcgjjnAMAzJa0MChwyGsQoRNXxVJMJjE1dAlziKkePsc5wiRtkVZnDJEYpv0b9Cq6rM6rd2atqeW6RSVhkXKKOLshd2zAXtmD+yVff5Zq+vVcL10aJaGWm7WwxerhY9/VRrNDk6/VWM9OzjBjudVIe+mx7i3kIf69llvUNjNx7sb7Ja9kf8b1mdPdAO9/S7f5Xj+eowfibzQi1GDkr/bMQpKW4kk4dx2LLPntyqINaxjk/qRRgYHyKJI9Ru4xBV6QlBICCkhPUwVAr5mBT9CyHwBLXyQgg==
ٌرٕ加 .PEFMUSFF
衝ظ٦سָ㹀侧✮庠̔简䕎✮庠
㢳㢌ꆀ加 .VMUJWBSJBUFUSFF
ⴓⶴָ⽃㢌ꆀ̔㢳㢌ꆀ简䕎
寸㹀加ךⰅ⸂瑞ⴓⶴ
ٌرٕ加 .PEFM5SFFT
衝ظ٦سָ㹀侧✮庠̔简䕎✮庠
㢳㢌ꆀ加 .VMUJWBSJBUF5SFFT
ⴓⶴָ⽃㢌ꆀ̔㢳㢌ꆀ简䕎
Regression Trees M5 MARS
㢳㢌ꆀ黝䘔涸㔐䌓
أفٓ؎ٝ ."34
ر٦ة 㔐䌓
ر٦ة ⴓ겲
Classification Trees OC1 Multivariate CART
寸㹀加ד걄㚖✳ⴓ
ⶴׅ➿ח걄㚖
䫓刼־կ
(SFFEZד㷕统
֮ת㹋欽⻉׃גְזְ˘
Ԩ ٌرٕ加衝ח 㹀侧✮庠״
醱꧟זٌرٕ䭯ׇ
Ӎ 걄㚖㞮歲ָ衼׃ֻ♶㸜㹀٥ꬊ鸬竲חז
˖ ..ˏך䎂徽⻉ؼُ٦ٔأذ؍ؙأ
˖ 㢳㢌ꆀ黝䘔㘗㔐䌓أفٓ؎ٝ ."34
ח״䫓简㘗⼒ⴓ简䕎㷕统
˖ 然桦涸寸㹀加
Ӎ 剑葺ⴓⶴ挿䱱稊ח衝ٌرٕךؿ؍حزָ䗳銲הז
ׯהず儗ח剑黝⻉ׅה鎘皾؝أزָꬊ䌢ח㣐ֹֻז
㼎Ⳣ
Ԩ 㢳㢌ꆀ加✳ⴓⶴח ⽃㢌ꆀ✳ⴓⶴ״
醱꧟ז✳⦼ⴓ겲㐻欽ְ
Ӎ ر٦ة倖晙⻉ ぐ걄㚖ך؟ٝفٕ侧幾㼰
饯ֿ׃麓ⶱ黝さ׃װְׅ
̔㢳ⴓ䀄דכזֻג✳ⴓ䀄ك٦أָ⚺崧זךֿך椚歋ח״
Ӎ ⴓⶴח״ぐ걄㚖ח衅؟ٝفٕ侧כוו幾ךד如⯋
幾ׁזְꣲծ㼭؟ٝفٕ鏣㹀ד葺ְⴓⶴך㷕统ָ㔭ꨇחז
أفٓ؎ٝ
걄㚖㞮歲ד鸬竲
˟ֿכ㷕统倯䒭ָ
խ(SFFEZזְׇ
劤䔲ח⼒ⴓ涸㹀侧٥鯥⚛遤✳ⴓⶴד葺ְךַכ剑㣐ךꟼ䗰
y=0.89 + -0.36 max(0,x-0.99)
+ -0.88 max(0,0.99-x)
y=1.23 + -0.59 max(0,x-0.99)
+ -1.32 max(0,0.99-x)
+ 1.41 max(0,x-4.96)
y=0.98 + -0.23 max(0,x-0.99)
+ -1.0 max(0,0.99-x)
+ 1.69 max(0,x-4.96)
+ -0.51 max(0,x-2.31)
y=0.95 + -0.12 max(0,x-0.99)
+ -0.96 max(0,0.99-x)
+ 0.77 max(0,x-4.96)
+ -0.79 max(0,x-2.31)
+ 0.87 max(0,x-2.31)
y=0.66 + -0.29 max(0,x-0.99)
䠣湫חװה鎘皾儗ַַָךד㹋ꥷך㷕统חכ
'BTU."34 'SJFENBO
ָ״ֻ欽ְ
Friedman JH. Multivariate Adaptive Regression Splines. The Annals of Statistics, 1991;19: 1–67.
劤䔲ח⼒ⴓ涸㹀侧٥鯥⚛遤✳ⴓⶴד葺ְךַכ剑㣐ךꟼ䗰
寸㹀加כ걄㚖ⴓⶴ♳ך㢳如⯋ؼأزؚٓي ⼒ⴓ涸㹀侧✮庠
̔չ(SFFEZד㧅䔲䚍ֶראַזְذؗز٦ז걄㚖ⴓⶴպחչ馄؝ٝ؟غז✮庠պ䫴さׇ
̔窟鎘涸חכקהו穗꿀ⴓ䋒ח鵚ְ葺ְ䚍颵䭯א 䝤ְֿהָꬊ䌢ח饯ֹבְ
鯥⚛遤זⱄ䌓涸✳ⴓⶴ
(SFFEZ䱱稊
⼒ⴓ涸չ㹀侧պ
ךؽٝ〳㢌זؼأزؚٓي
˖ ."34ך״ֲזأفٓ؎ٝ 䫓
ך湫䱸ךؿ؍حذ؍ؚٝכ㹋ꥷח⢪ֲהꨇָ֮
걄㚖ⴓⶴה걄㚖XJTFזⱖ⫷ךず儗剑黝⻉כװכ♧菙חכהגꨇ׃ְ
˖ 帾㾴㷕统ָ."40ךさ䧭ד剅ֽQJFDFXJTFBOFז✮庠ה罋ִלծػًٓة剑黝⻉ֽ
ׅלչ걄㚖ⴓⶴךקֲכ䩛ח㹀תպ."4חזגְ挿כꬊ䌢ח莆帾ְ
ٓٝتي㼗䕦加3BOEPN1SPKFDUJPO5SFFT
STOC 2008 NIPS 2010
Google scholar citations: 419 Google scholar citations: 10
瑞ⴓⶴر٦ة圓鸡ה׃גכ寸㹀加כLEUSFFָ넝如⯋דכ31加ךקֲָ䚍颵ָ葺ְכ׆
⼒ⴓ涸㹀侧ה 4QMJOFה殯ז
걄㚖㞮歲ָ♶鸬竲ֺׅ˘
RPܾఆͷྖҬׂ
10 RP vectors
ְ֮כ♶鸬竲䚍ך㉏겗כչ،ٝ؟ٝـٕպד鍑嶊ַׅ孡ח׃זֻג葺ְךַتًזךַ
"OFأفٓ؎ٝח⡂䠬ׄך걄㚖ⴓⶴכ
㺁僒ח〳腉
0QFORVFTUJPOT
˖ 植㖈ꬊ䌢ח״ֻ⢪寸㹀加،ٝ؟ٝـٕכQJFDFXJTFDPOTUBUד걄㚖圓眠כ
(SFFEZ鯥⚛遤✳ⴓⶴ
ָֿ̔植㹋涸ז剑葺ְ㧅⼿鍑זךַծ何㊣ׅ،؎ر،ָ֮䖤ךַ
˖ 315SFF&YUSB5SFFT(SBEJFOU#PPTUJOH
˖ ぐ걄㚖׀הח"OFזⱖ⫷㹀纏ׅךכ銲嗚鎢
˖ ⼒ⴓ涸㹀侧ךתתָ穗꿀ⴓ䋒ח屟גְג葺ְ
&YUSB5SFFTד亻⡂涸ז鸬竲䚍邌植ׅ
ֿכ//MJLFז寸㹀加圓眠װ寸㹀加ך//MJLFז㷕统חꟼ⤘
Popov S, Morozov S, Babenko A. Neural Oblivious Decision Ensembles for Deep Learning on
Tabular Data. ICLR 2020, http://arxiv.org/abs/1909.06312
Kontschieder P, Fiterau M, Criminisi A, Bulo SR. Deep Neural Decision Forests. IJCAI 2016,
https://www.ijcai.org/Proceedings/16/Papers/628.pdf
˖ %JFSFOUJBCMFז寸㹀加/FVSBM/FUXPSLTַך寸㹀加圓眠
Lee G-H, Jaakkola TS. Oblique Decision Trees from Derivatives of ReLU Networks.
ICLR 2020, https://openreview.net/pdf?id=Bke8UR4FPB
Lay N, Harrison AP, Schreiber S, Dawer G, Barbu A. Random Hinge Forest for Differentiable
Learning. ICML 2018, http://arxiv.org/abs/1802.03882
Zantedeschi V, Kusner MJ, Niculae V. Learning Binary Decision Trees by Argmin Differentiation.
ICML 2021, http://arxiv.org/abs/2010.04627
Hazimeh H, Ponomareva N, Mol P, Tan Z, Mazumder R. The Tree Ensemble Layer: Differentiability
meets Conditional Computation. ICML 2020, https://arxiv.org/abs/2002.07772
➙傈ך鑧겗䲿⣘
˖ 寸㹀啾㔐䌓ך⥋걾⼒䱿㹀٥#FOJHO0WFSUUJOH
噟 荈搫猰㷕דך堣唒㷕统ⵃ崞欽
דِ٦ؠה׃ג寸㹀加،ٝ؟ٝـٕ
הصُ٦ٕٓطحز
⢪גְג⳿⠓植韋ה㉏겗ך稱➜
˖ 㢳㢌ꆀ加ה3F-6طحزךⰅ⸂瑞ⴓⶴ
⠓陽䖓ך荈䊹'PMMPXVQ
Thanks to ⸇秛륊♧ׁ %/"/**
/(#PPTUBOE1SFEJDUJPO*OUFSWBMT
6ODFSUBJOUZ2VBOUJDBUJPO 62
"MFBUPSJDVODFSUBJOUZה&QJTUFNJDVODFSUBJOUZ
%JTUSJCVUJPO'SFF62JO.-
$POGPSNBM1SFEJDUJPO
/(#PPTU
https://stanfordmlgroup.github.io/projects/ngboost/
/(#PPTUBOE1SFEJDUJPO*OUFSWBMT
https://towardsdatascience.com/interpreting-the-probabilistic-predictions-from-ngboost-868d6f3770b2
NGBRegressor
זח̕ך״ֲז锷㣐ְח֮˘
ֿכ⳿勻ג葺ְךַ
ֿזהַֻ˘ 锷ה׃גծ窟鎘㷕涸חכ؟ٝفٕ♶駈ד
֮6OEFSTQFDJFEז朐屣ד⡦ַ䒉鏣涸ז陽锷
כ〳腉זךַ
堣唒㷕统ٌرٕךEFQMPZ䖓ח⳿⠓ֲر٦ة ذأ
زر٦ة
כ搀ꣲծ鎮箺ر٦ة٥嗚鏾ر٦ةכ剣
ꣲծהְֲ搀椚鏣㹀דכ穠㽷չٌرٕך䌓秛غ
؎،أ JOEVDUJWFCJBT
պָ湡ך㉏겗חوحث
ַָֽׅꅾ銲
ֿך䠐דٌرٕך䮙⹛ך帾ְ椚鍑ה
㹋欽خ٦ٕה㹋㉏겗ח鼧⯋ׅ
㹋騧ךJUFSBUJPOכ㣐✲
6ODFSUBJOUZ2VBOUJGJDBUJPO 62
堣唒㷕统ךչ✮庠պךךכر٦ةך،َװ㉏겗鏣㹀ךךךꣲ歲ח״ג姻然חכ
寸׃גזזְկ׃넝如⯋䚍זוך㔭ꨇׁ驎תִה䌢ח♧㹀ך然䏝ךꣲ歲ָ֮ה
罋ִץֹկ
堣唒㷕统✮庠ךչ♶然㹋䚍պ鐰⣣ ♶然ַׁך㹀ꆀ⻉
כ㹋欽堣唒㷕统ךꅾ銲ז㉏겗
Uncertainty Quantification (UQ)
https://en.wikipedia.org/wiki/Uncertainty_quantification
窟鎘㷕ֽדכזֻ鎘庠װ侧椚ٌرؚٔٝזו䊨㷕걄㚖סֻד
圫ղח陽锷ׁծׁתׂתז62䩛岀ָ䲿周ׁגֹկ
"MFBUPSJDVODFSUBJOUZה&QJTUFNJDVODFSUBJOUZ
6ODFSUBJOUZ ♶然㹋䚍
חכչ"MFBUPSJDպזךהչ&QJTUFNJDպזךָ֮ծ圫ղזⴓꅿד
陽锷ׁגֹկ✳珏겲ך♶然㹋䚍ָ幉さׁג✮庠ٌرؚٔٝח䕦갟ׅկ
https://en.wikipedia.org/wiki/Uncertainty_quantification#Aleatoric_and_epistemic
˖ "MFBUPSJD6ODFSUBJOUZ 4UBUJTUJDBM6ODFSUBJOUZ
˖ &QJTUFNJD6ODFSUBJOUZ 4ZTUFNBUJDVODFSUBJOUZ
㼎韋植韋חろת劤颵涸ז⩐搫䚍ח״չ♶然㹋䚍պկずׄ㹋꿀װ鎘庠✳㔐װ
ה⦼ָתֻずׄחכזזְկ➂䩛ד➰♷ׅ侄䌌ٓكٕךJODPOTJTUFODZזוろկ
״㢳ֻך䞔㜠꧊ה׃ג⡚幾ֿׅהָדֹזְ♶然ַׁկ
濼陎ָ♶駈ְ֮כٌرָٕ♶姻然٥♶㸣Ⰻדֿ֮הח饯㔓ׅչ♶然㹋䚍պկ植儗挿
דכⰅ䩛דֹזְ䞔㜠ָ֮ח欰ׄ♶然ַׁկ
⩐搫铎䊴PS⩐搫涸ז♶然㹋ׁ
禸窟铎䊴PS钠陎锷涸ז♶然㹋ׁ
%JTUSJCVUJPO'SFF6ODFSUBJOUZ2VBOUJGJDBUJPO 62
• Accuracy alone does not suffice for reliable, consequential decision-making; we also need
uncertainty.
• Distribution-free UQ gives finite-sample statistical guarantees for any predictive model, no
matter how bad/misspecified, and any data distribution, even if unknown.
• DF techniques such as conformal prediction represent a new, principled approach to UQ for
complex prediction systems, such as deep learning.
%JTUSJCVUJPO'SFF6ODFSUBJOUZ2VBOUJGJDBUJPO 62
• conformal prediction
• tolerance regions
• risk-controlling prediction sets
• calibration by binning
and more
$POGPSNBMQSFEJDUJPO $1
https://en.wikipedia.org/wiki/Conformal_prediction
$POGPSNBMQSFEJDUJPO $1
"Conformity" 侭さ䚍
Non-conformity measure ♶侭さ䚍㛇彊
֮⢽ָתדך⢽ה嫰ץגוְֻVOVTVBMַ庠ծ$1،ٕ؞ٔؤيכ
ֿך♶侭さ䚍⯋ח✮庠⼒圓眠ׅ
$POGPSNBMQSFEJDUJPO $1
https://github.com/valeman/awesome-conformal-prediction
Awesome Conformal Prediction
$POGPSNBMQSFEJDUJPO $1
https://github.com/valeman/awesome-conformal-prediction
Awesome Conformal Prediction
$POGPSNBMQSFEJDUJPO $1
https://www.stat.cmu.edu/~aramdas/conformal.html
."1*&.PEFM"HOPTUJD1SFEJDUJPO*OUFSWBM&TUJNBUPS
https://github.com/scikit-learn-contrib/MAPIE
."1*&.PEFM"HOPTUJD1SFEJDUJPO*OUFSWBM&TUJNBUPS
With MAPIE, uncertainties are back in machine learning
https://towardsdatascience.com/with-mapie-uncertainties-are-back-in-machine-learning-882d5c17fdc3
."1*&.PEFM"HOPTUJD1SFEJDUJPO*OUFSWBM&TUJNBUPS
https://github.com/scikit-learn-contrib/MAPIE
regressor = ExtraTreesRegressor(max_leaf_nodes=32, bootstrap=True)
MapieRegressor(regressor,
method="plus", cv=-1)
MapieRegressor(regressor,
method="plus",
cv=Subsample(n_resampling
s=50))
MapieRegressor(regressor,
method="plus", cv=-1)
MapieRegressor(regressor,
method="plus",
cv=Subsample(n_resampling
s=50))
95% prediction intervals
95% prediction intervals
90% prediction intervals
90% prediction intervals
Jacknife+
Jacknife+ after bootstrap
Jacknife+
Jacknife+ after bootstrap