Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Airflowのチュートリアルやってみた
Search
iwamot
PRO
June 30, 2023
Technology
0
430
Airflowのチュートリアルやってみた
2023-06-30
ENECHANGE Tech Talk(社内勉強会)
iwamot
PRO
June 30, 2023
Tweet
Share
More Decks by iwamot
See All by iwamot
これがLambdaレス時代のChatOpsだ!実例で学ぶAmazon Q Developerカスタムアクション活用法
iwamot
PRO
8
1.4k
Developer Certificate of Origin、よさそう
iwamot
PRO
0
29
復号できなくなると怖いので、AWS KMSキーの削除を「面倒」にしてみた CODT 2025 クロージングイベント版
iwamot
PRO
1
110
復号できなくなると怖いので、AWS KMSキーの削除を「面倒」にしてみた
iwamot
PRO
3
88
IPA&AWSダブル全冠が明かす、人生を変えた勉強法のすべて
iwamot
PRO
14
11k
2年でここまで成長!AWSで育てたAI Slack botの軌跡
iwamot
PRO
4
1.1k
名単体テスト 禁断の傀儡(モック)
iwamot
PRO
1
580
クォータ監視、AWS Organizations環境でも楽勝です✌️
iwamot
PRO
2
580
Cline、めっちゃ便利、お金が飛ぶ💸
iwamot
PRO
22
22k
Other Decks in Technology
See All in Technology
エンジニアとPMのドメイン知識の溝をなくす、 AIネイティブな開発プロセス
applism118
4
1.3k
Power of Kiro : あなたの㌔はパワステ搭載ですか?
r3_yamauchi
PRO
0
140
Jakarta Agentic AI Specification - Status and Future
reza_rahman
0
100
Haskell を武器にして挑む競技プログラミング ─ 操作的思考から意味モデル思考へ
naoya
6
1.5k
AIと二人三脚で育てた、個人開発アプリグロース術
zozotech
PRO
1
730
新 Security HubがついにGA!仕組みや料金を深堀り #AWSreInvent #regrowth / AWS Security Hub Advanced GA
masahirokawahara
1
2k
Databricks向けJupyter Kernelでデータサイエンティストの開発環境をAI-Readyにする / Data+AI World Tour Tokyo After Party
genda
1
120
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
130
打 造 A I 驅 動 的 G i t H u b ⾃ 動 化 ⼯ 作 流 程
appleboy
0
330
Oracle Cloud Infrastructure IaaS 新機能アップデート 2025/09 - 2025/11
oracle4engineer
PRO
0
120
今からでも間に合う!速習Devin入門とその活用方法
ismk
1
700
世界最速級 memcached 互換サーバー作った
yasukata
0
340
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Designing Experiences People Love
moore
143
24k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Embracing the Ebb and Flow
colly
88
4.9k
Statistics for Hackers
jakevdp
799
230k
Building an army of robots
kneath
306
46k
The Language of Interfaces
destraynor
162
25k
Scaling GitHub
holman
464
140k
RailsConf 2023
tenderlove
30
1.3k
What's in a price? How to price your products and services
michaelherold
246
13k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Transcript
Airflowのチュートリアルやってみた 2023-06-30 ENECHANGE Tech Talk(社内勉強会) CTO室 岩本隆史
Airflow案件に関わることに
よい機会なのでMWAAを試したい https://aws.amazon.com/jp/managed-workflows-for-apache-airflow/
チュートリアルをやってみよう https://docs.aws.amazon.com/mwaa/latest/userguide/quick-start.html
めっちゃ時間かかった… https://docs.aws.amazon.com/mwaa/latest/userguide/quick-start.html#quick-start- createstack
Dockerだと数分で構築完了 curl -LfO 'https://airflow.apache.org/docs/apache-airflow/2.6.2/docker-compose.yaml' mkdir -p ./dags ./logs ./plugins ./config
echo -e "AIRFLOW_UID=$(id -u)" > .env docker compose up airflow-init docker compose up https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/
サンプルDAGも豊富
tutorial DAGを実行
成功
3つのタスク
タスク1=日付の出力 t1 = BashOperator( task_id="print_date", bash_command="date", ) [2023-06-22, 06:52:22 UTC]
{subprocess.py:75} INFO - Running command: ['/bin/bash', '-c', 'date'] [2023-06-22, 06:52:22 UTC] {subprocess.py:86} INFO - Output: [2023-06-22, 06:52:22 UTC] {subprocess.py:93} INFO - Thu Jun 22 06:52:22 UTC 2023 [2023-06-22, 06:52:22 UTC] {subprocess.py:97} INFO - Command exited with return code 0
タスク2=スリープ t2 = BashOperator( task_id="sleep", depends_on_past=False, bash_command="sleep 5", retries=3, )
[2023-06-22, 06:52:25 UTC] {subprocess.py:75} INFO - Running command: ['/bin/bash', '-c', 'sleep 5'] [2023-06-22, 06:52:25 UTC] {subprocess.py:86} INFO - Output: [2023-06-22, 06:52:30 UTC] {subprocess.py:97} INFO - Command exited with return code 0
タスク3=テンプレートの利用 templated_command = dedent( """ {% for i in range(5)
%} echo "{{ ds }}" echo "{{ macros.ds_add(ds, 7)}}" {% endfor %} """ ) t3 = BashOperator( task_id="templated", depends_on_past=False, bash_command=templated_command, )
10個のechoにレンダリング echo "2023-06-22" echo "2023-06-29" echo "2023-06-22" echo "2023-06-29" echo
"2023-06-22" echo "2023-06-29" echo "2023-06-22" echo "2023-06-29" echo "2023-06-22" echo "2023-06-29"
10個の日付が出力 [2023-06-22, 06:52:25 UTC] {subprocess.py:86} INFO - Output: [2023-06-22, 06:52:25
UTC] {subprocess.py:93} INFO - 2023-06-22 [2023-06-22, 06:52:25 UTC] {subprocess.py:93} INFO - 2023-06-29 [2023-06-22, 06:52:25 UTC] {subprocess.py:93} INFO - 2023-06-22 [2023-06-22, 06:52:25 UTC] {subprocess.py:93} INFO - 2023-06-29 [2023-06-22, 06:52:25 UTC] {subprocess.py:93} INFO - 2023-06-22 [2023-06-22, 06:52:25 UTC] {subprocess.py:93} INFO - 2023-06-29 [2023-06-22, 06:52:25 UTC] {subprocess.py:93} INFO - 2023-06-22 [2023-06-22, 06:52:25 UTC] {subprocess.py:93} INFO - 2023-06-29 [2023-06-22, 06:52:25 UTC] {subprocess.py:93} INFO - 2023-06-22 [2023-06-22, 06:52:25 UTC] {subprocess.py:93} INFO - 2023-06-29 [2023-06-22, 06:52:25 UTC] {subprocess.py:97} INFO - Command exited with return code 0
タスク依存関係は演算子で指定 t1 >> [t2, t3]
別のチュートリアルも実行
Extract @task() def extract(): data_string = '{"1001": 301.27, "1002": 433.21,
"1003": 502.22}' order_data_dict = json.loads(data_string) return order_data_dict Key Value return_value {'1001': 301.27, '1002': 433.21, '1003': 502.22}
Transform @task(multiple_outputs=True) def transform(order_data_dict: dict): total_order_value = 0 for value
in order_data_dict.values(): total_order_value += value return {"total_order_value": total_order_value} Key Value total_order_value 1236.7 return_value {'total_order_value': 1236.7}
Load @task() def load(total_order_value: float): print(f"Total order value is: {total_order_value:.2f}")
[2023-06-22, 07:55:00 UTC] {logging_mixin.py:149} INFO - Total order value is: 1236.70
タスク依存関係は自動解決 order_data = extract() order_summary = transform(order_data) load(order_summary["total_order_value"])
実はAirflow 2.0の新機能 @task def hello_name(name: str): print(f'Hello {name}!') hello_name('Airflow users')
Dockerで気軽に試そう