surveys: Primordial Non-Gaussianity (PNG) ‣ Galaxy surveys: many observational systematics Can we fully exploit DES / Euclid / LSST ? ‣ This work: (1) blind mitigation of systematics in quasar clustering (2) robust PNG constraints
described by power spectra ‣ Non-Gaussanity: higher order terms ‣ Local PNG: = + fNL[ 2 h 2i] + gNL[ 3 3 h 2i] 3pt: bispectrum 4pt: trispectrum 2pt: power spectrum Skewness + kurtosis from “squeezed” configurations … …
LSS >>> # modes CMB ‣ Different scales than CMB, sensitive to other PNG types Dalal, Dore et al (2007) Matarrese & Verde (2008) Slosar et al (2008) … fNL = 2.7 ± 5.8 PNG enhance bias of LSS tracers on large scales Kaiser effect
constraints ‣ BUT plagued by systematics… Slosar et al (2008) Xia et al (2010) Pullen & Hirata (2012) Leistedt et al (2013) Giannantonio et al (2013) Ho et al (2013) Agarwal et al(2014) … This work: 49 < fNL < 31 (2 ) Giannantonio et al (2013) NVSS +LRG QSO only
+ highly biased 㱺 best signal-to-noise ‣ Problem: quasars look like stars! ‣ Option 1: spectroscopic surveys: small, not so deep ‣ Option 2: photometric surveys: large, deep, but plagued by systematics Galaxies Quasars Slosar et al (2008), Xia et al (2010), Pullen & Hirata (2012), Leistedt et al (2013), Giannantonio et al (2013) , Ho et al (2013), Agarwal et al (2014) …
auto + cross angular power spectra simultaneously ‣ Model of the pixel-pixel covariance matrix: ‣ Why not pseudo spectrum estimator? Because only optimal with flat power spectra and no systematics… Theory spectrum Noise, systematics, ... Covariance matrix between 2 pixels Cij = h xixj i = X ` ✓ 2` + 1 4⇡ ◆ C`P`(cos ✓ij) + Nij
Masking or correcting data is dangerous and insufficient ‣ Need to ignore spatial modes = Bayesian marginalisation = project out weighted data pixels = mode projection ‣ Use “projective” covariance matrix s.t. C 1 = lim ↵i !1 S({C` }) + N + X i ↵i ~ mi ~ mt i ! 1 ~ mi i = 1, . . . , Nsys ~ miC 1 ~ x = 0 8 i signal noise systematics
+ pairs 㱺 >20,000 templates 2. Decorrelate set of systematics with SVD 20,000 templates 㱺 3,700 uncorrelated modes 3. Project out the modes most correlated with data 3,700 null tests; project out modes with chi2>1 Sacrificing some signal in favour of robustness 㱺 Blind mitigation of systematics
initial state, or models with several light fields. Agullo and Shandera (2012), Dias, Ribeiro and Seery (2013) b(k) / k 2+nfNL 45 e3.7nfNL 34 e3.3nfNL Generalised bias Giannantonio et al (2013) Agarwal et al (2014) Leistedt, Peiris & Roth (2014)
contamination ‣ Standard approach: fix parameters, correct data / spectra ‣ Extended approach: marginalisation over parameter values Performed analytically in Cl estimator 㱺 mode projection ‣ BUT not suitable for non-linear contamination by many correlated systematics nobserved QSO = ntruth QSO + ↵1 sys1 + ↵2 sys2 + . . . in each pixel