Fourier-Bessel (see e.g. Kitching et al papers) dealing w masks, modeling, covariances, systematics is difficult & intensive Address these issues using novel 3D transforms
r2 sin ✓d✓d dr S2 ⇥ R+ Leistedt & McEwen (2012) 3D with xz slices slice z = 0 slice x = 0 half sphere r = R/ 4 half sphere r = R/ 2 h Real part Imag. part sZ`mp(✓, , r) ⌘ sY`m(✓, ) Kp(r)
Exact when using sampling theorem (=pixelization + quadrature rule) sf(✓, , r) = L 1 X `=0 ` X m= ` P X p=0 sf`mp sY`m(✓, )Kp(r) sf`mp = ZZZ sf(✓, , r) sY ⇤ `m (✓, ) K⇤ p (r) r2 sin ✓d✓d dr
no sampling theorem but linear sum of Fourier-Laguerre coefficients => Exact Fourier-Bessel transform for generic signals Leistedt & McEwen (2012) sf`m(k) = ZZZ sf(✓, , r) sY ⇤ `m (✓, ) j⇤ ` (kr) r2 sin ✓d✓d dr
defined radial & angular scales ‣ probe N complementary orientations about ‣ achieve exact reconstruction & multi resolution in harmonic space thanks to sampling theorem Leistedt & McEwen (IEEE, 2012) (✓, ) sWs ij (✓, , , r) ⌘ sf ? s ij = hsf|R(✓, , )s iji s ij Leistedt, McEwen, Kitching & Peiris (PRD, 2015) hsf|R(✓, , ) Trs iji
soon: application to data Related: CMB map-making (Keir’s talk, 1601:01322) E-B separation (Leistedt+, in prep) 3D Data Compression LSST taskforce Summary