Upgrade to Pro — share decks privately, control downloads, hide ads and more …

3D weak and galaxy clustering using spin wavelets on the ball

3D weak and galaxy clustering using spin wavelets on the ball

Talk given at the Cosmostats conference in Berkeley summarizing arXiv:1509.06749 and arXiv:1509.06750

Boris Leistedt

January 13, 2016
Tweet

More Decks by Boris Leistedt

Other Decks in Research

Transcript

  1. 3D weak lensing & galaxy clustering with spin wavelets on

    the ball Boris Leistedt Simons Fellow, New York University @ixkael - ixkael.com
  2. Based on the recent works: 1205.0792, 1509.06749, 1509.06750 with Hiranya

    Peiris Jason McEwen Tom Kitching Martin Büttner Codes available at s2let.org (2D) & flaglets.org (3D)
  3. ROAD MAP Galaxy surveys and data on the ball Fourier-Laguerre

    transform Flaglets and 3D cosmic shear
  4. Cosmology with galaxy surveys Dark matter Dark energy GR /

    modified gravity Origin of structure Exotic physics Dark matter Galaxies
  5. spectroscopic photometric credit: Aragon-Calvo et al (2014) z z 3D

    3D + 2+1D types + redshifts no lensing shallow lensing deep no types / redshifts
  6. State of the art 2+1D real or harmonic space analyses

    Fourier-Bessel (see e.g. Kitching et al papers) dealing w masks, modeling, covariances, systematics is difficult & intensive Address these issues using novel 3D transforms
  7. Wish list for 3D transforms Separable, on rather than Fast

    & accurate, with 3D pixelization Relate to Fourier-Bessel B3 = S2 ⇥ R+ R3
  8. Fourier-Laguerre basis: Separable basis on with measure d3~ r =

    r2 sin ✓d✓d dr S2 ⇥ R+ Leistedt & McEwen (2012) 3D with xz slices slice z = 0 slice x = 0 half sphere r = R/ 4 half sphere r = R/ 2 h Real part Imag. part sZ`mp(✓, , r) ⌘ sY`m(✓, ) Kp(r)
  9. Leistedt & McEwen (2012) Band limited signal: harmonic coefficients L2P

    Exact when using sampling theorem (=pixelization + quadrature rule) sf(✓, , r) = L 1 X `=0 ` X m= ` P X p=0 sf`mp sY`m(✓, )Kp(r) sf`mp = ZZZ sf(✓, , r) sY ⇤ `m (✓, ) K⇤ p (r) r2 sin ✓d✓d dr
  10. 0 0.2 0.4 0.6 0.8 1 0 0 0.2 0.4

    0.6 0.8 1 −0.2 −0.1 0 0.1 0.2 0 0.2 0.4 0.6 0.8 1 −0.02 −0.01 0 0.01 0.02 r r Kp (r) r rKp (r) reconstructed on calculated from } samples ⇠ 2PL2 f`mp f
  11. Connection to Fourier-Bessel analysis Fourier-Bessel transform: Hard to compute since

    no sampling theorem but linear sum of Fourier-Laguerre coefficients => Exact Fourier-Bessel transform for generic signals Leistedt & McEwen (2012) sf`m(k) = ZZZ sf(✓, , r) sY ⇤ `m (✓, ) j⇤ ` (kr) r2 sin ✓d✓d dr
  12. Cosmology with Fourier-Laguerre ‣ Fast, exact transform (pixelization, FFTs, recurrences)

    ‣ Direct relation to Fourier-Bessel ‣ Easy to deconvolve mask ‣ Better control over scales probed ‣ Spatial + radial systematics marginalization
  13. Flaglet transform = convolution Construct flaglets to: ‣ probe well

    defined radial & angular scales ‣ probe N complementary orientations about ‣ achieve exact reconstruction & multi resolution in harmonic space thanks to sampling theorem Leistedt & McEwen (IEEE, 2012) (✓, ) sWs ij (✓, , , r) ⌘ sf ? s ij = hsf|R(✓, , )s iji s ij Leistedt, McEwen, Kitching & Peiris (PRD, 2015) hsf|R(✓, , ) Trs iji
  14. Flaglet transform of Horizon simulation Input signal Scaling fct Flaglet:

    i=0,j=0 Flaglet: i=0,j=1 Flaglet: i=1,j=0 Flaglet: i=1,j=1
  15. Spin s = 0 flaglets with = ⌫ = 3,

    I0 = J0 = 2 and N = 3 N = 2 N = 1 3D with xz slices slice z = 0 slice x = 0 half sphere r = R/ 2 half sphere r = R/ 2 half sphere r = R/ 2 i = 2 j = 2 i = 2 j = 3 i = 3 j = 2 i = 3 j = 3 Leistedt, McEwen, Kitching & Peiris (PRD, 2015)
  16. Real part of spin s = 2 flaglets with =

    ⌫ = 3 , I0 = J0 = 2 , N = 1 Imag. part Modulus 3D with xz slices slice z = 0 slice x = 0 half sphere r = R/ 2 half sphere r = R/ 2 half sphere r = R/ 2 i = 2 j = 2 i = 2 j = 3 i = 3 j = 2 i = 3 j = 3 Leistedt, McEwen, Kitching & Peiris (PRD, 2015)
  17. 3D Cosmic shear with flaglets Flaglet transform: Covariance of flaglet

    coefficients: Leistedt, McEwen, Kitching & Peiris (PRD, 2015) Easy to calculate from theory and data sW ij (✓, , r) = (2 ? 2 ij)(✓, , r) h 2W ij (✓, , r) 2W i0j0⇤ (✓0, 0, r0) i = 2 ⇡ X ` (N`,2)2 4 ⇥ Z dk k2 Z dk0 k02 C ` P`( ✓) 2 Hij ` (k, r) 2 Hi0j0⇤ ` (k0, r0) = Cij,i0j0 (cos ✓, r, r0 )
  18. Fast flaglet estimator (on data & theory) Can deal with

    complicated masks Can cut out unreliable modes Extendable to galaxy clustering, shear, flexion, etc Next: redshift uncertainties & spatial systematics Leistedt, McEwen, Kitching & Peiris (PRD, 2015)
  19. 3D cosmology with novel transforms [Leistedt+2012, 2015, flaglets.org, s2let.org] Coming

    soon: application to data Related: CMB map-making (Keir’s talk, 1601:01322) E-B separation (Leistedt+, in prep) 3D Data Compression LSST taskforce Summary