Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
YGLF_2019.pdf
Search
Asim Hussain
April 05, 2019
Technology
1
160
YGLF_2019.pdf
Asim Hussain
April 05, 2019
Tweet
Share
More Decks by Asim Hussain
See All by Asim Hussain
JavaScript Saves The World - DotJS 2019
jawache
0
910
Saving the world, one line at a time [CodeLeaders Australia 2019]
jawache
0
86
AI + JavaScript Rocks @ GDGDevFest UA 2018
jawache
0
61
How to hack a web app? WebConfAsia 2018
jawache
0
96
How to scale an SPA? @ AmsterdamJS 2018
jawache
0
34
How to hack an Angular app? - ngConf 2018
jawache
0
990
Getting started with node.js @ AngleBrackets 2018
jawache
1
180
How to hack an Angular app? @ ngVikings 2018
jawache
1
1.1k
How to hack a python app? @ PyCaribbean 2018
jawache
0
180
Other Decks in Technology
See All in Technology
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
180
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
210
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
130
Webhook best practices for rock solid and resilient deployments
glaforge
1
280
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
プロポーザルに込める段取り八分
shoheimitani
1
190
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.3k
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
460
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
150
Featured
See All Featured
It's Worth the Effort
3n
188
29k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
51
Between Models and Reality
mayunak
1
180
WENDY [Excerpt]
tessaabrams
9
36k
Ethics towards AI in product and experience design
skipperchong
2
190
Tell your own story through comics
letsgokoyo
1
810
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
910
The browser strikes back
jonoalderson
0
360
The Curse of the Amulet
leimatthew05
1
8.4k
Building AI with AI
inesmontani
PRO
1
690
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Transcript
The Future of Machine Learning & JavaScript @jawache YGLF 2019
Asim Hussain @jawache codecraft.tv microsoft.com
https://aka.ms/jawache-cda @jawache
@jawache https://www.palinternship.com/
@jawache
Asim Web Development Machine Learning This is @EleanorHaproff's slide
None
@jawache
TheMojifier™ @jawache
None
@jawache themojifier.com
None
How to Calculate Emotion? @jawache
(1) Detect Facial Features @jawache
https://towardsdatascience.com/facial-keypoints-detection-deep-learning-737547f73515
(2) Use a Neural Network @jawache
Neural Networks Axon Dendrites Axons Body @jawache
1 23 8.6 -0.5 2.1 Activation Function @jawache Neural Networks
1 23 8.6 -0.5 2.1 x x activation(...) = -11.5
= 18.06 7.01 !-> !-> } @jawache Neural Networks
Output 0 0 1 Input @jawache Neural Networks
1.1 4.2 0.3 4 12 93 3 @jawache Neural Networks
1.1 4.2 0.3 4 12 93 @jawache 8 - 8
= -5 3 Neural Networks
1.1 4.2 0.3 4 12 93 @jawache - 8 =
-5 3 8 Neural Networks
0.1 9.2 0.2 4 12 93 @jawache 8 8 Neural
Networks
@jawache https://azure.microsoft.com/services/cognitive-services/face/
https:!//<region>.api.cognitive.microsoft.com/face/v1.0/detect { "url": "<path-to-image>" } @jawache
@jawache
Summary @jawache
• Neural Networks are incredibly powerful • Conceptually, they are
simple to understand @jawache Summary
TensorFlow, MobileNet & I'm fine @jawache
@jawache
@jawache
@jawache
TensorFlow.js @jawache
TensorFlow.js Train models Load pre-trained models @jawache
https://github.com/tensorflow/tfjs-models @jawache MobileNet
https://azure.microsoft.com/services/cognitive-services/computer-vision/ @jawache
https://codepen.io/sdras/full/jawPGa/ @jawache
@jawache https://twitter.com/ollee/status/930303340516216832
@jawache https://twitter.com/FrontendNE/status/930120267992616960
@jawache https://twitter.com/chrispiecom/status/930407801402347520
Summary @jawache
• TensorFlow.js doesn't have any dependancies • MobileNet is a
simple way to analyse images • Azure Computer Vision API ❤ @jawache Summary
Image2Image @jawache
DEMO @jawache https://zaidalyafeai.github.io/pix2pix/cats.html
@jawache Generator Discriminator ✅ ❌
@jawache Generator Discriminator ✅ ❌
@jawache Generator Discriminator ✅ ✅
@jawache
@jawache
@jawache
@jawache https://github.com/NVIDIA/vid2vid
@jawache https://github.com/NVIDIA/vid2vid
@jawache https://github.com/NVIDIA/vid2vid
@jawache https://github.com/hanzhanggit/StackGAN
Summary @jawache
• GANs learn to generate new images • They take
a lot of compute to train • But the generator model can be run in the browser @jawache Summary
@jawache aka.ms/mojifier
Asim Hussain @jawache codecraft.tv microsoft.com