Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
YGLF_2019.pdf
Search
Asim Hussain
April 05, 2019
Technology
1
130
YGLF_2019.pdf
Asim Hussain
April 05, 2019
Tweet
Share
More Decks by Asim Hussain
See All by Asim Hussain
JavaScript Saves The World - DotJS 2019
jawache
0
880
Saving the world, one line at a time [CodeLeaders Australia 2019]
jawache
0
68
AI + JavaScript Rocks @ GDGDevFest UA 2018
jawache
0
45
How to hack a web app? WebConfAsia 2018
jawache
0
81
How to scale an SPA? @ AmsterdamJS 2018
jawache
0
24
How to hack an Angular app? - ngConf 2018
jawache
0
910
Getting started with node.js @ AngleBrackets 2018
jawache
1
170
How to hack an Angular app? @ ngVikings 2018
jawache
1
1.1k
How to hack a python app? @ PyCaribbean 2018
jawache
0
160
Other Decks in Technology
See All in Technology
例外処理を理解して、設計段階からエラーを「見つけやすく」「起こりにくく」する
kajitack
12
3.8k
エンジニアとしてプロダクトマネジメントに向き合った1年半
sansantech
PRO
0
100
ソフトウェア開発現代史:製造業とソフトウェアは本当に共存できていたのか?品質とスピードを問い直す
takabow
15
5.3k
さいきょうのアーキテクチャを生み出すセンスメイキング
jgeem
0
270
Postman Vaultを使った秘密情報の安全な管理
nagix
3
140
アーキテクチャわからん、の話
shirayanagiryuji
0
150
信頼性を支えるテレメトリーパイプラインの構築 / Building Telemetry Pipeline with OpenTelemetry
ymotongpoo
9
5k
業務ツールをAIエージェントとつなぐ - Composio
knishioka
0
120
Redshiftを中心としたAWSでのデータ基盤
mashiike
0
100
GraphRAG: What I Thought I Knew (But Didn’t)
sashimimochi
1
230
トレードオフスライダーにおける品質について考えてみた
suzuki_tada
3
180
panicを深ぼってみる
kworkdev
PRO
2
150
Featured
See All Featured
Producing Creativity
orderedlist
PRO
343
39k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.8k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
113
50k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
VelocityConf: Rendering Performance Case Studies
addyosmani
327
24k
A designer walks into a library…
pauljervisheath
205
24k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
The Cult of Friendly URLs
andyhume
78
6.2k
Why Our Code Smells
bkeepers
PRO
335
57k
Transcript
The Future of Machine Learning & JavaScript @jawache YGLF 2019
Asim Hussain @jawache codecraft.tv microsoft.com
https://aka.ms/jawache-cda @jawache
@jawache https://www.palinternship.com/
@jawache
Asim Web Development Machine Learning This is @EleanorHaproff's slide
None
@jawache
TheMojifier™ @jawache
None
@jawache themojifier.com
None
How to Calculate Emotion? @jawache
(1) Detect Facial Features @jawache
https://towardsdatascience.com/facial-keypoints-detection-deep-learning-737547f73515
(2) Use a Neural Network @jawache
Neural Networks Axon Dendrites Axons Body @jawache
1 23 8.6 -0.5 2.1 Activation Function @jawache Neural Networks
1 23 8.6 -0.5 2.1 x x activation(...) = -11.5
= 18.06 7.01 !-> !-> } @jawache Neural Networks
Output 0 0 1 Input @jawache Neural Networks
1.1 4.2 0.3 4 12 93 3 @jawache Neural Networks
1.1 4.2 0.3 4 12 93 @jawache 8 - 8
= -5 3 Neural Networks
1.1 4.2 0.3 4 12 93 @jawache - 8 =
-5 3 8 Neural Networks
0.1 9.2 0.2 4 12 93 @jawache 8 8 Neural
Networks
@jawache https://azure.microsoft.com/services/cognitive-services/face/
https:!//<region>.api.cognitive.microsoft.com/face/v1.0/detect { "url": "<path-to-image>" } @jawache
@jawache
Summary @jawache
• Neural Networks are incredibly powerful • Conceptually, they are
simple to understand @jawache Summary
TensorFlow, MobileNet & I'm fine @jawache
@jawache
@jawache
@jawache
TensorFlow.js @jawache
TensorFlow.js Train models Load pre-trained models @jawache
https://github.com/tensorflow/tfjs-models @jawache MobileNet
https://azure.microsoft.com/services/cognitive-services/computer-vision/ @jawache
https://codepen.io/sdras/full/jawPGa/ @jawache
@jawache https://twitter.com/ollee/status/930303340516216832
@jawache https://twitter.com/FrontendNE/status/930120267992616960
@jawache https://twitter.com/chrispiecom/status/930407801402347520
Summary @jawache
• TensorFlow.js doesn't have any dependancies • MobileNet is a
simple way to analyse images • Azure Computer Vision API ❤ @jawache Summary
Image2Image @jawache
DEMO @jawache https://zaidalyafeai.github.io/pix2pix/cats.html
@jawache Generator Discriminator ✅ ❌
@jawache Generator Discriminator ✅ ❌
@jawache Generator Discriminator ✅ ✅
@jawache
@jawache
@jawache
@jawache https://github.com/NVIDIA/vid2vid
@jawache https://github.com/NVIDIA/vid2vid
@jawache https://github.com/NVIDIA/vid2vid
@jawache https://github.com/hanzhanggit/StackGAN
Summary @jawache
• GANs learn to generate new images • They take
a lot of compute to train • But the generator model can be run in the browser @jawache Summary
@jawache aka.ms/mojifier
Asim Hussain @jawache codecraft.tv microsoft.com