Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
YGLF_2019.pdf
Search
Asim Hussain
April 05, 2019
Technology
1
150
YGLF_2019.pdf
Asim Hussain
April 05, 2019
Tweet
Share
More Decks by Asim Hussain
See All by Asim Hussain
JavaScript Saves The World - DotJS 2019
jawache
0
910
Saving the world, one line at a time [CodeLeaders Australia 2019]
jawache
0
85
AI + JavaScript Rocks @ GDGDevFest UA 2018
jawache
0
60
How to hack a web app? WebConfAsia 2018
jawache
0
95
How to scale an SPA? @ AmsterdamJS 2018
jawache
0
34
How to hack an Angular app? - ngConf 2018
jawache
0
990
Getting started with node.js @ AngleBrackets 2018
jawache
1
180
How to hack an Angular app? @ ngVikings 2018
jawache
1
1.1k
How to hack a python app? @ PyCaribbean 2018
jawache
0
180
Other Decks in Technology
See All in Technology
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
150
学習データって増やせばいいんですか?
ftakahashi
2
510
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
320
Kiro を用いたペアプロのススメ
taikis
1
490
通勤手当申請チェックエージェント開発のリアル
whisaiyo
2
160
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
370
[デモです] NotebookLM で作ったスライドの例
kongmingstrap
0
160
AI駆動開発の実践とその未来
eltociear
1
280
AIの長期記憶と短期記憶の違いについてAgentCoreを例に深掘ってみた
yakumo
4
460
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
0
540
GitHub Copilotを使いこなす 実例に学ぶAIコーディング活用術
74th
3
3.5k
日本Rubyの会: これまでとこれから
snoozer05
PRO
4
160
Featured
See All Featured
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
220
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Optimizing for Happiness
mojombo
379
70k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Making Projects Easy
brettharned
120
6.5k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
130
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
91k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Utilizing Notion as your number one productivity tool
mfonobong
2
180
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Transcript
The Future of Machine Learning & JavaScript @jawache YGLF 2019
Asim Hussain @jawache codecraft.tv microsoft.com
https://aka.ms/jawache-cda @jawache
@jawache https://www.palinternship.com/
@jawache
Asim Web Development Machine Learning This is @EleanorHaproff's slide
None
@jawache
TheMojifier™ @jawache
None
@jawache themojifier.com
None
How to Calculate Emotion? @jawache
(1) Detect Facial Features @jawache
https://towardsdatascience.com/facial-keypoints-detection-deep-learning-737547f73515
(2) Use a Neural Network @jawache
Neural Networks Axon Dendrites Axons Body @jawache
1 23 8.6 -0.5 2.1 Activation Function @jawache Neural Networks
1 23 8.6 -0.5 2.1 x x activation(...) = -11.5
= 18.06 7.01 !-> !-> } @jawache Neural Networks
Output 0 0 1 Input @jawache Neural Networks
1.1 4.2 0.3 4 12 93 3 @jawache Neural Networks
1.1 4.2 0.3 4 12 93 @jawache 8 - 8
= -5 3 Neural Networks
1.1 4.2 0.3 4 12 93 @jawache - 8 =
-5 3 8 Neural Networks
0.1 9.2 0.2 4 12 93 @jawache 8 8 Neural
Networks
@jawache https://azure.microsoft.com/services/cognitive-services/face/
https:!//<region>.api.cognitive.microsoft.com/face/v1.0/detect { "url": "<path-to-image>" } @jawache
@jawache
Summary @jawache
• Neural Networks are incredibly powerful • Conceptually, they are
simple to understand @jawache Summary
TensorFlow, MobileNet & I'm fine @jawache
@jawache
@jawache
@jawache
TensorFlow.js @jawache
TensorFlow.js Train models Load pre-trained models @jawache
https://github.com/tensorflow/tfjs-models @jawache MobileNet
https://azure.microsoft.com/services/cognitive-services/computer-vision/ @jawache
https://codepen.io/sdras/full/jawPGa/ @jawache
@jawache https://twitter.com/ollee/status/930303340516216832
@jawache https://twitter.com/FrontendNE/status/930120267992616960
@jawache https://twitter.com/chrispiecom/status/930407801402347520
Summary @jawache
• TensorFlow.js doesn't have any dependancies • MobileNet is a
simple way to analyse images • Azure Computer Vision API ❤ @jawache Summary
Image2Image @jawache
DEMO @jawache https://zaidalyafeai.github.io/pix2pix/cats.html
@jawache Generator Discriminator ✅ ❌
@jawache Generator Discriminator ✅ ❌
@jawache Generator Discriminator ✅ ✅
@jawache
@jawache
@jawache
@jawache https://github.com/NVIDIA/vid2vid
@jawache https://github.com/NVIDIA/vid2vid
@jawache https://github.com/NVIDIA/vid2vid
@jawache https://github.com/hanzhanggit/StackGAN
Summary @jawache
• GANs learn to generate new images • They take
a lot of compute to train • But the generator model can be run in the browser @jawache Summary
@jawache aka.ms/mojifier
Asim Hussain @jawache codecraft.tv microsoft.com