Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Real Life Death Stars: Measuring Rocks on Alien Planets by Tearing Them Apart

jjhermes
January 28, 2016

Real Life Death Stars: Measuring Rocks on Alien Planets by Tearing Them Apart

Outreach talk, 40 min. January 2016: Astronomy Days, North Carolina Museum of Natural Sciences, Raleigh, NC, USA.

jjhermes

January 28, 2016
Tweet

More Decks by jjhermes

Other Decks in Science

Transcript

  1. Real-Life Death Stars:
    Measuring Rocks on
    Alien Planets by
    Tearing Them Apart
    JJ Hermes
    Hubble Fellow
    University of North Carolina at Chapel Hill
    jjhermes.web.unc.edu

    View Slide

  2. Kitt Peak National Observatory, Arizona

    View Slide

  3. My History: The University of Texas at Austin
    • Undergrad in
    Physics &
    Astronomy,
    2002-2007
    • Ph.D. in
    Astronomy,
    2008-2013
    • I have spent
    >220 nights at
    McDonald
    Observatory

    View Slide

  4. My History: The University of Warwick
    • I did my first Postdoctoral Research Fellowship in England
    – There I learned to include a ‘u’ in words like colour
    • Astronomers tend to have postdoc appointments for 2-7(!) years before
    settling in at a faculty job teaching at a university
    William Herschel Telescope, Canary Islands, Spain

    View Slide

  5. My History: The University of North Carolina
    • Currently I am a Hubble Fellow at the University of North Carolina at Chapel
    Hill, another postdoctoral research job

    View Slide

  6. V = 13.3 mag Star Wars: A New Hope © Disney

    View Slide

  7. We Have Found Thousands of Planets
    Outside Our Solar System

    View Slide

  8. “So What Might Alien
    Life Look Like?”
    “The Search for Life Beyond Earth…”

    View Slide

  9. This is still the stuff of science fiction
    JD Hancock

    View Slide

  10. “What Are Rocks Like
    on Alien Worlds?”
    Alien World = Extrasolar Planets (Planets
    Outside Our Solar System)

    View Slide

  11. They are mostly composed of:
    Iron, Oxygen, Silicon, Magnesium … and Water!
    Alien Worlds are Just
    Like Rocks on Earth
    Earth
    “Alien Rocks”

    View Slide

  12. “So How Do We Know
    Anything About Alien
    Rocks?”

    View Slide

  13. Light Is the Only Way Know
    About Anything Outside Our
    Solar System

    View Slide

  14. You Need to Know Two Things:
    1. Each Atom
    Has Its Own
    Fingerprint
    2. Very Old
    Stars are a
    Blank Canvas
    Henry Bloomfield

    View Slide

  15. Each Atom Has Its Own Fingerprint
    Passing SunlightThrough a Prism:
    Each Line is from an ELEMENT!
    Boston University

    View Slide

  16. La-Lu
    57-71
    Ac-Lr
    89-103
    Tc
    Lr
    Pm
    Np Pu Am Cm Bk Cf Es Fm Md No
    Bh
    Rf Db Sg Hs Mt
    1
    2
    3
    4
    5
    6
    7
    1.0079
    1 4.0026
    2
    20.180
    10
    14.007
    7
    39.948
    18
    35.453
    17
    18.998
    9
    15.999
    8
    83.798
    36
    131.29
    54
    (222)
    86
    12.011
    6
    C
    10.811
    B
    5
    26.982
    Al
    13 28.086
    Si
    14 30.974
    P
    15 32.065
    S
    16
    6.941
    Li
    3 9.0122
    Be
    4
    22.990
    Na
    11 24.305
    Mg
    12
    39.098
    K
    19 40.078
    Ca
    20 44.956
    Sc
    21 47.867
    Ti
    22 50.942
    V
    23 51.996
    Cr
    24 54.938
    Mn
    25 55.845
    Fe
    26 58.933
    Co
    27 58.693
    Ni
    28 63.546
    Cu
    29 65.38
    Zn
    30 69.723
    Ga
    31 72.64
    Ge
    32 74.922
    As
    33 78.96
    Se
    34 79.904
    35
    85.468
    Rb
    37 87.62
    Sr
    38 88.906
    Y
    39 91.224
    Zr
    40 92.906
    Nb
    41 95.96
    Mo
    42
    132.91
    Cs
    55 137.33
    Ba
    56
    138.91
    La
    57
    178.49
    Hf
    72 180.95
    Ta
    73 183.84
    W
    74
    (223)
    Fr
    87 (226)
    Ra
    88
    (227)
    Ac
    89
    (98)
    43 126.90
    I
    53
    101.07
    Ru
    44 102.91
    Rh
    45 106.42
    Pd
    46 107.87
    Ag
    47 112.41
    Cd
    48
    186.21
    Re
    75 190.23
    Os
    76 192.22
    Ir
    77 195.08
    Pt
    78 196.97
    Au
    79 200.59
    Hg
    80 204.38
    Tl
    81 207.2
    Pb
    82 208.98
    Bi
    83 (209)
    Po
    84 (210)
    At
    85
    114.82
    In
    49 118.71
    Sn
    50 121.76
    Sb
    51 127.60
    Te
    52
    H He
    Ne
    N
    Ar
    Cl
    F
    O
    Kr
    Xe
    Rn
    Br
    IA
    IIA
    IIIB IVB VB VIB VIIB IB IIB
    IVA VA VIA VIIA
    VIIIB
    VIIIA
    1
    5
    4
    2
    3
    13 14 15 16 17
    18
    6 7 8 9 10 11 12
    IIIA
    174.97
    Lu
    71
    140.12
    Ce
    58
    232.04
    Th
    90 231.04
    Pa
    91 238.03
    U
    92
    140.91
    Pr
    59 144.24
    Nd
    60
    (262)
    103
    (145)
    61
    (237)
    93 (244)
    94 (243)
    95 (247)
    96 (247)
    97 (251)
    98 (252)
    99 (257)
    100 (258)
    101 (259)
    102
    150.36
    Sm
    62 151.96
    Eu
    63 157.25
    Gd
    64 158.93
    Tb
    65 162.50
    Dy
    66 164.93
    Ho
    67 167.26
    Er
    68 168.93
    Tm
    69 173.05
    Yb
    70
    (2 )
    72
    107
    (26 )
    7
    104 (26 )
    8
    105 (2 )
    71
    106 (277)
    108 (2 )
    76
    109 (2 1)
    8
    Ds
    110 (2 )
    80
    Rg
    111
    10.811
    B
    5
    13 IIIA
    (2 )
    85
    Cn
    112 118
    113 114 115 116 117 ( )
    . . .
    ( )
    . . . (2 )
    87 ( )
    . . . (2 )
    91 ( )
    . . .
    Uut Fl Uup Lv Uus Uuo
    Copyright Eni G
    © 2012 eneralić
    HYDROGEN HELIUM
    NEON
    NITROGEN
    ARGON
    CHLORINE
    FLUORINE
    OXYGEN
    KRYPTON
    XENON
    RADON
    CARBON
    BORON
    ALUMINIUM SILICON PHOSPHORUS SULPHUR
    LITHIUM BERYLLIUM
    SODIUM MAGNESIUM
    POTASSIUM CALCIUM SCANDIUM TITANIUM VANADIUM CHROMIUM MANGANESE COBALT NICKEL COPPER ZINC GALLIUM GERMANIUM ARSENIC SELENIUM BROMINE
    RUBIDIUM STRONTIUM YTTRIUM ZIRCONIUM NIOBIUM MOLYBDENUM
    CAESIUM BARIUM
    LANTHANUM
    HAFNIUM TANTALUM TUNGSTEN
    FRANCIUM RADIUM
    ACTINIUM
    TECHNETIUM IODINE
    RUTHENIUM RHODIUM PALLADIUM SILVER CADMIUM
    RHENIUM OSMIUM IRIDIUM PLATINUM GOLD THALLIUM LEAD BISMUTH POLONIUM ASTATINE
    INDIUM TIN ANTIMONY TELLURIUM
    PERIOD
    GROUP
    IRON
    MERCURY
    LUTETIUM
    CERIUM
    THORIUM PROTACTINIUM URANIUM
    PRASEODYMIUM NEODYMIUM
    LAWRENCIUM
    PROMETHIUM
    NEPTUNIUM PLUTONIUM AMERICIUM CURIUM BERKELIUM CALIFORNIUM EINSTEINIUM FERMIUM MENDELEVIUM NOBELIUM
    SAMARIUM EUROPIUM GADOLINIUM TERBIUM DYSPROSIUM HOLMIUM ERBIUM THULIUM YTTERBIUM
    BOHRIUM
    RUTHERFORDIUM DUBNIUM SEABORGIUM HASSIUM MEITNERIUM
    BORON
    ATOMIC NUMBER
    ELEMENT NAME
    SYMBOL
    RELATIVE ATOMIC MASS (1)
    GROUP NUMBERS
    CHEMICAL ABSTRACT SERVICE
    (1986)
    GROUP NUMBERS
    IUPAC RECOMMENDATION
    (1985)
    Lanthanide
    Actinide
    ROENTGENIUM
    PERIODIC TABLE OF THE ELEMENTS
    LANTHANIDE
    ACTINIDE
    DARMSTADTIUM
    h .com
    ttp://www.periodni
    COPERNICIUM UNUNTRIUM FLEROVIUM UNUNPENTIUM LIVERMORIUM UNUNSEPTIUM UNUNOCTIUM
    Relative atomic masses are expressed with
    five significant figures. For elements that have
    no stable nuclides, the value enclosed in
    brackets indicates the mass number of the
    longest-lived isotope of the element. However
    three such elements (Th, Pa and U) do have a
    characteristic terrestrial isotopic composition,
    and for these an atomic weight is tabulated.
    (1) Pure Appl. Chem., , No. , (200 )
    81 11 2131-2156 9
    Hydrogen

    View Slide

  17. La-Lu
    57-71
    Ac-Lr
    89-103
    Tc
    Lr
    Pm
    Np Pu Am Cm Bk Cf Es Fm Md No
    Bh
    Rf Db Sg Hs Mt
    1
    2
    3
    4
    5
    6
    7
    1.0079
    1 4.0026
    2
    20.180
    10
    14.007
    7
    39.948
    18
    35.453
    17
    18.998
    9
    15.999
    8
    83.798
    36
    131.29
    54
    (222)
    86
    12.011
    6
    C
    10.811
    B
    5
    26.982
    Al
    13 28.086
    Si
    14 30.974
    P
    15 32.065
    S
    16
    6.941
    Li
    3 9.0122
    Be
    4
    22.990
    Na
    11 24.305
    Mg
    12
    39.098
    K
    19 40.078
    Ca
    20 44.956
    Sc
    21 47.867
    Ti
    22 50.942
    V
    23 51.996
    Cr
    24 54.938
    Mn
    25 55.845
    Fe
    26 58.933
    Co
    27 58.693
    Ni
    28 63.546
    Cu
    29 65.38
    Zn
    30 69.723
    Ga
    31 72.64
    Ge
    32 74.922
    As
    33 78.96
    Se
    34 79.904
    35
    85.468
    Rb
    37 87.62
    Sr
    38 88.906
    Y
    39 91.224
    Zr
    40 92.906
    Nb
    41 95.96
    Mo
    42
    132.91
    Cs
    55 137.33
    Ba
    56
    138.91
    La
    57
    178.49
    Hf
    72 180.95
    Ta
    73 183.84
    W
    74
    (223)
    Fr
    87 (226)
    Ra
    88
    (227)
    Ac
    89
    (98)
    43 126.90
    I
    53
    101.07
    Ru
    44 102.91
    Rh
    45 106.42
    Pd
    46 107.87
    Ag
    47 112.41
    Cd
    48
    186.21
    Re
    75 190.23
    Os
    76 192.22
    Ir
    77 195.08
    Pt
    78 196.97
    Au
    79 200.59
    Hg
    80 204.38
    Tl
    81 207.2
    Pb
    82 208.98
    Bi
    83 (209)
    Po
    84 (210)
    At
    85
    114.82
    In
    49 118.71
    Sn
    50 121.76
    Sb
    51 127.60
    Te
    52
    H He
    Ne
    N
    Ar
    Cl
    F
    O
    Kr
    Xe
    Rn
    Br
    IA
    IIA
    IIIB IVB VB VIB VIIB IB IIB
    IVA VA VIA VIIA
    VIIIB
    VIIIA
    1
    5
    4
    2
    3
    13 14 15 16 17
    18
    6 7 8 9 10 11 12
    IIIA
    174.97
    Lu
    71
    140.12
    Ce
    58
    232.04
    Th
    90 231.04
    Pa
    91 238.03
    U
    92
    140.91
    Pr
    59 144.24
    Nd
    60
    (262)
    103
    (145)
    61
    (237)
    93 (244)
    94 (243)
    95 (247)
    96 (247)
    97 (251)
    98 (252)
    99 (257)
    100 (258)
    101 (259)
    102
    150.36
    Sm
    62 151.96
    Eu
    63 157.25
    Gd
    64 158.93
    Tb
    65 162.50
    Dy
    66 164.93
    Ho
    67 167.26
    Er
    68 168.93
    Tm
    69 173.05
    Yb
    70
    (2 )
    72
    107
    (26 )
    7
    104 (26 )
    8
    105 (2 )
    71
    106 (277)
    108 (2 )
    76
    109 (2 1)
    8
    Ds
    110 (2 )
    80
    Rg
    111
    10.811
    B
    5
    13 IIIA
    (2 )
    85
    Cn
    112 118
    113 114 115 116 117 ( )
    . . .
    ( )
    . . . (2 )
    87 ( )
    . . . (2 )
    91 ( )
    . . .
    Uut Fl Uup Lv Uus Uuo
    Copyright Eni G
    © 2012 eneralić
    HYDROGEN HELIUM
    NEON
    NITROGEN
    ARGON
    CHLORINE
    FLUORINE
    OXYGEN
    KRYPTON
    XENON
    RADON
    CARBON
    BORON
    ALUMINIUM SILICON PHOSPHORUS SULPHUR
    LITHIUM BERYLLIUM
    SODIUM MAGNESIUM
    POTASSIUM CALCIUM SCANDIUM TITANIUM VANADIUM CHROMIUM MANGANESE COBALT NICKEL COPPER ZINC GALLIUM GERMANIUM ARSENIC SELENIUM BROMINE
    RUBIDIUM STRONTIUM YTTRIUM ZIRCONIUM NIOBIUM MOLYBDENUM
    CAESIUM BARIUM
    LANTHANUM
    HAFNIUM TANTALUM TUNGSTEN
    FRANCIUM RADIUM
    ACTINIUM
    TECHNETIUM IODINE
    RUTHENIUM RHODIUM PALLADIUM SILVER CADMIUM
    RHENIUM OSMIUM IRIDIUM PLATINUM GOLD THALLIUM LEAD BISMUTH POLONIUM ASTATINE
    INDIUM TIN ANTIMONY TELLURIUM
    PERIOD
    GROUP
    IRON
    MERCURY
    LUTETIUM
    CERIUM
    THORIUM PROTACTINIUM URANIUM
    PRASEODYMIUM NEODYMIUM
    LAWRENCIUM
    PROMETHIUM
    NEPTUNIUM PLUTONIUM AMERICIUM CURIUM BERKELIUM CALIFORNIUM EINSTEINIUM FERMIUM MENDELEVIUM NOBELIUM
    SAMARIUM EUROPIUM GADOLINIUM TERBIUM DYSPROSIUM HOLMIUM ERBIUM THULIUM YTTERBIUM
    BOHRIUM
    RUTHERFORDIUM DUBNIUM SEABORGIUM HASSIUM MEITNERIUM
    BORON
    ATOMIC NUMBER
    ELEMENT NAME
    SYMBOL
    RELATIVE ATOMIC MASS (1)
    GROUP NUMBERS
    CHEMICAL ABSTRACT SERVICE
    (1986)
    GROUP NUMBERS
    IUPAC RECOMMENDATION
    (1985)
    Lanthanide
    Actinide
    ROENTGENIUM
    PERIODIC TABLE OF THE ELEMENTS
    LANTHANIDE
    ACTINIDE
    DARMSTADTIUM
    h .com
    ttp://www.periodni
    COPERNICIUM UNUNTRIUM FLEROVIUM UNUNPENTIUM LIVERMORIUM UNUNSEPTIUM UNUNOCTIUM
    Relative atomic masses are expressed with
    five significant figures. For elements that have
    no stable nuclides, the value enclosed in
    brackets indicates the mass number of the
    longest-lived isotope of the element. However
    three such elements (Th, Pa and U) do have a
    characteristic terrestrial isotopic composition,
    and for these an atomic weight is tabulated.
    (1) Pure Appl. Chem., , No. , (200 )
    81 11 2131-2156 9
    Helium

    View Slide

  18. La-Lu
    57-71
    Ac-Lr
    89-103
    Tc
    Lr
    Pm
    Np Pu Am Cm Bk Cf Es Fm Md No
    Bh
    Rf Db Sg Hs Mt
    1
    2
    3
    4
    5
    6
    7
    1.0079
    1 4.0026
    2
    20.180
    10
    14.007
    7
    39.948
    18
    35.453
    17
    18.998
    9
    15.999
    8
    83.798
    36
    131.29
    54
    (222)
    86
    12.011
    6
    C
    10.811
    B
    5
    26.982
    Al
    13 28.086
    Si
    14 30.974
    P
    15 32.065
    S
    16
    6.941
    Li
    3 9.0122
    Be
    4
    22.990
    Na
    11 24.305
    Mg
    12
    39.098
    K
    19 40.078
    Ca
    20 44.956
    Sc
    21 47.867
    Ti
    22 50.942
    V
    23 51.996
    Cr
    24 54.938
    Mn
    25 55.845
    Fe
    26 58.933
    Co
    27 58.693
    Ni
    28 63.546
    Cu
    29 65.38
    Zn
    30 69.723
    Ga
    31 72.64
    Ge
    32 74.922
    As
    33 78.96
    Se
    34 79.904
    35
    85.468
    Rb
    37 87.62
    Sr
    38 88.906
    Y
    39 91.224
    Zr
    40 92.906
    Nb
    41 95.96
    Mo
    42
    132.91
    Cs
    55 137.33
    Ba
    56
    138.91
    La
    57
    178.49
    Hf
    72 180.95
    Ta
    73 183.84
    W
    74
    (223)
    Fr
    87 (226)
    Ra
    88
    (227)
    Ac
    89
    (98)
    43 126.90
    I
    53
    101.07
    Ru
    44 102.91
    Rh
    45 106.42
    Pd
    46 107.87
    Ag
    47 112.41
    Cd
    48
    186.21
    Re
    75 190.23
    Os
    76 192.22
    Ir
    77 195.08
    Pt
    78 196.97
    Au
    79 200.59
    Hg
    80 204.38
    Tl
    81 207.2
    Pb
    82 208.98
    Bi
    83 (209)
    Po
    84 (210)
    At
    85
    114.82
    In
    49 118.71
    Sn
    50 121.76
    Sb
    51 127.60
    Te
    52
    H He
    Ne
    N
    Ar
    Cl
    F
    O
    Kr
    Xe
    Rn
    Br
    IA
    IIA
    IIIB IVB VB VIB VIIB IB IIB
    IVA VA VIA VIIA
    VIIIB
    VIIIA
    1
    5
    4
    2
    3
    13 14 15 16 17
    18
    6 7 8 9 10 11 12
    IIIA
    174.97
    Lu
    71
    140.12
    Ce
    58
    232.04
    Th
    90 231.04
    Pa
    91 238.03
    U
    92
    140.91
    Pr
    59 144.24
    Nd
    60
    (262)
    103
    (145)
    61
    (237)
    93 (244)
    94 (243)
    95 (247)
    96 (247)
    97 (251)
    98 (252)
    99 (257)
    100 (258)
    101 (259)
    102
    150.36
    Sm
    62 151.96
    Eu
    63 157.25
    Gd
    64 158.93
    Tb
    65 162.50
    Dy
    66 164.93
    Ho
    67 167.26
    Er
    68 168.93
    Tm
    69 173.05
    Yb
    70
    (2 )
    72
    107
    (26 )
    7
    104 (26 )
    8
    105 (2 )
    71
    106 (277)
    108 (2 )
    76
    109 (2 1)
    8
    Ds
    110 (2 )
    80
    Rg
    111
    10.811
    B
    5
    13 IIIA
    (2 )
    85
    Cn
    112 118
    113 114 115 116 117 ( )
    . . .
    ( )
    . . . (2 )
    87 ( )
    . . . (2 )
    91 ( )
    . . .
    Uut Fl Uup Lv Uus Uuo
    Copyright Eni G
    © 2012 eneralić
    HYDROGEN HELIUM
    NEON
    NITROGEN
    ARGON
    CHLORINE
    FLUORINE
    OXYGEN
    KRYPTON
    XENON
    RADON
    CARBON
    BORON
    ALUMINIUM SILICON PHOSPHORUS SULPHUR
    LITHIUM BERYLLIUM
    SODIUM MAGNESIUM
    POTASSIUM CALCIUM SCANDIUM TITANIUM VANADIUM CHROMIUM MANGANESE COBALT NICKEL COPPER ZINC GALLIUM GERMANIUM ARSENIC SELENIUM BROMINE
    RUBIDIUM STRONTIUM YTTRIUM ZIRCONIUM NIOBIUM MOLYBDENUM
    CAESIUM BARIUM
    LANTHANUM
    HAFNIUM TANTALUM TUNGSTEN
    FRANCIUM RADIUM
    ACTINIUM
    TECHNETIUM IODINE
    RUTHENIUM RHODIUM PALLADIUM SILVER CADMIUM
    RHENIUM OSMIUM IRIDIUM PLATINUM GOLD THALLIUM LEAD BISMUTH POLONIUM ASTATINE
    INDIUM TIN ANTIMONY TELLURIUM
    PERIOD
    GROUP
    IRON
    MERCURY
    LUTETIUM
    CERIUM
    THORIUM PROTACTINIUM URANIUM
    PRASEODYMIUM NEODYMIUM
    LAWRENCIUM
    PROMETHIUM
    NEPTUNIUM PLUTONIUM AMERICIUM CURIUM BERKELIUM CALIFORNIUM EINSTEINIUM FERMIUM MENDELEVIUM NOBELIUM
    SAMARIUM EUROPIUM GADOLINIUM TERBIUM DYSPROSIUM HOLMIUM ERBIUM THULIUM YTTERBIUM
    BOHRIUM
    RUTHERFORDIUM DUBNIUM SEABORGIUM HASSIUM MEITNERIUM
    BORON
    ATOMIC NUMBER
    ELEMENT NAME
    SYMBOL
    RELATIVE ATOMIC MASS (1)
    GROUP NUMBERS
    CHEMICAL ABSTRACT SERVICE
    (1986)
    GROUP NUMBERS
    IUPAC RECOMMENDATION
    (1985)
    Lanthanide
    Actinide
    ROENTGENIUM
    PERIODIC TABLE OF THE ELEMENTS
    LANTHANIDE
    ACTINIDE
    DARMSTADTIUM
    h .com
    ttp://www.periodni
    COPERNICIUM UNUNTRIUM FLEROVIUM UNUNPENTIUM LIVERMORIUM UNUNSEPTIUM UNUNOCTIUM
    Relative atomic masses are expressed with
    five significant figures. For elements that have
    no stable nuclides, the value enclosed in
    brackets indicates the mass number of the
    longest-lived isotope of the element. However
    three such elements (Th, Pa and U) do have a
    characteristic terrestrial isotopic composition,
    and for these an atomic weight is tabulated.
    (1) Pure Appl. Chem., , No. , (200 )
    81 11 2131-2156 9
    Sodium

    View Slide

  19. V = 13.3 mag Alwyn Ladell

    View Slide

  20. This is Called “Spectroscopy”
    Passing SunlightThrough a Prism:
    This dark line here is from CALCIUM
    Boston University

    View Slide

  21. You Need to Know Two Things:
    1. Each Atom
    Has Its Own
    Fingerprint
    2. Very Old
    Stars are a
    Blank Canvas
    Henry Bloomfield

    View Slide

  22. But each one contributes less than
    0.000000000000001% of the Sun’s metals
    Comets crash into our
    Sun all the time.

    View Slide

  23. View Slide

  24. All stars like the Sun eventually
    run out of fuel.
    When they do, they lose all their
    envelope and only the core remains:
    a white dwarf star.

    View Slide

  25. View Slide

  26. View Slide

  27. Sun
    White Dwarf
    (60% Mass of Sun)
    Earth
    (0.0003% Mass of Sun)

    View Slide

  28. Under Gravity, Heaviest Elements Sink
    Sharyn Morrow
    A ‘Typical’ White Dwarf
    Carbon/Oxygen Core
    (r = 8500 km)
    Helium Layer
    (260 km)
    Outer Hydrogen Layer
    (30 km)

    View Slide

  29. Most White Dwarfs: Only Hydrogen

    View Slide

  30. Some White Dwarfs Show Metals

    View Slide

  31. Mark Garlick

    View Slide

  32. View Slide

  33. The Abundances
    Resemble Earth
    and Meteorites
    Jay Farihi 2011

    View Slide

  34. Earth
    Rocks Falling on
    White Dwarfs
    Iron, Oxygen,
    Silicon,
    Magnesium
    Xu et al. 2014

    View Slide

  35. Earth
    Rocks Falling on
    White Dwarfs
    Iron, Oxygen,
    Silicon,
    Magnesium
    Xu et al. 2014
    Mike Jura, UCLA

    View Slide

  36. View Slide

  37. View Slide

  38. Today
    Boris Gänsicke

    View Slide

  39. 5.5 billion years
    from now
    Boris Gänsicke

    View Slide

  40. The life cycle of the Sun
    9 billion years
    from now
    Boris Gänsicke

    View Slide

  41. 1. Take a solar system. There are
    likely billions in our Galaxy.
    2. As the host star evolves, the
    orbits of planets expand.
    Some may scatter and collide.
    3. Ancient solar systems have
    leftover debris. We can see it if it
    gets close to a white dwarf.

    View Slide

  42. Saturn: Familiar Debris Rings

    View Slide

  43. White Dwarfs: Debris Rings on Steroids

    View Slide

  44. V = 13.3 mag Star Wars: A New Hope © Disney

    View Slide

  45. V = 13.3 mag Star Wars: A New Hope © Disney

    View Slide

  46. Mark Garlick

    View Slide

  47. Mark Garlick
    A. Vanderburg et al. 2015; Gänsicke et al. 2016

    View Slide

  48. Mark Garlick

    View Slide

  49. We can measure the bulk abundances of
    rocks in extrasolar planetary systems

    View Slide

  50. What about water?

    View Slide

  51. Mark Garlick

    View Slide

  52. Oxygen Excess: Water-Rich Material!
    Rocks = MgO, Al2
    O3
    , SiO2
    ,
    CaO, TiO2
    , Cr2
    O3
    ,
    MnO, FeO, Fe2
    O3
    , ...
    Anything Else = CO2
    , H2
    O
    Farihi et al. 2013;
    Raddi et al. 2015
    Very little Carbon, so excess
    Oxygen likely H2
    O!
    White Dwarf GD 61
    Two specific white dwarfs have
    rocks, maybe worlds, that
    are roughly 25-40% water!

    View Slide

  53. Billions of planets likely exist in the Galaxy
    “The Search for Life Beyond Earth…”
    Many of these planets are rocky, like Earth
    Using ancient stars, we can learn that these
    alien rocks are composed of the same
    material as Earth… including water!

    View Slide

  54. Sheila Sund

    View Slide