Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
May 04, 2012
Programming
21
2.3k
MongoDB for Analytics
Presented at MongoSF on May 4th, 2012.
John Nunemaker
PRO
May 04, 2012
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
AI: The stuff that nobody shows you
jnunemaker
PRO
2
250
Atom
jnunemaker
PRO
10
4.5k
MongoDB for Analytics
jnunemaker
PRO
11
1k
Addicted to Stable
jnunemaker
PRO
32
2.8k
MongoDB for Analytics
jnunemaker
PRO
16
30k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Why NoSQL?
jnunemaker
PRO
10
980
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.5k
I Have No Talent
jnunemaker
PRO
14
1k
Other Decks in Programming
See All in Programming
CSC307 Lecture 08
javiergs
PRO
0
670
登壇資料を作る時に意識していること #登壇資料_findy
konifar
4
1.1k
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
300
Grafana:建立系統全知視角的捷徑
blueswen
0
330
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
4
590
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
130
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
960
SourceGeneratorのススメ
htkym
0
190
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.6k
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
組織で育むオブザーバビリティ
ryota_hnk
0
170
Featured
See All Featured
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
240
Why Our Code Smells
bkeepers
PRO
340
58k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Embracing the Ebb and Flow
colly
88
5k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Into the Great Unknown - MozCon
thekraken
40
2.3k
Between Models and Reality
mayunak
1
190
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
250
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
Transcript
GitHub John Nunemaker MongoSF 2012 May 4, 2012 MongoDB for
Analytics A loving conversation with @jnunemaker
None
Background How hernias can be good for you
None
None
1 month Of evenings and weekends
1 year Since public launch
13 tiny servers 2 web, 6 app, 3 db, 2
queue
7-8 Million Page views per day
None
None
None
None
Implementation Imma show you how we do what we do
baby
Doing It (mostly) Live No aggregate querying
None
None
get('/track.gif') do track_service.record(...) TrackGif end
class TrackService def record(attrs) message = MessagePack.pack(attrs) @client.set(@queue, message) end
end
class TrackProcessor def run loop { process } end def
process record @client.get(@queue) end def record(message) attrs = MessagePack.unpack(message) Hit.record(attrs) end end
http://bit.ly/rt-kestrel
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
http://bit.ly/rt-counters http://bit.ly/rt-counters2
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{sid}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth Don’t say shard, don’t say shard...
Partition Hot Data Currently using collections for time frames
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
GitHub Thank you!
[email protected]
John Nunemaker MongoSF 2012 May 4,
2012 @jnunemaker