Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
May 04, 2012
Programming
21
2.3k
MongoDB for Analytics
Presented at MongoSF on May 4th, 2012.
John Nunemaker
PRO
May 04, 2012
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
Atom
jnunemaker
PRO
10
4.3k
MongoDB for Analytics
jnunemaker
PRO
11
960
Addicted to Stable
jnunemaker
PRO
32
2.6k
MongoDB for Analytics
jnunemaker
PRO
16
30k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
Why NoSQL?
jnunemaker
PRO
10
960
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.5k
I Have No Talent
jnunemaker
PRO
14
990
Why MongoDB Is Awesome
jnunemaker
PRO
18
4.5k
Other Decks in Programming
See All in Programming
AI Coding Meetup #3 - 導入セッション / ai-coding-meetup-3
izumin5210
0
3.3k
Claude CodeによるAI駆動開発の実践 〜そこから見えてきたこれからのプログラミング〜
iriikeita
0
280
Web フロントエンドエンジニアに開かれる AI Agent プロダクト開発 - Vercel AI SDK を観察して AI Agent と仲良くなろう! #FEC余熱NIGHT
izumin5210
3
550
なぜあの開発者はDevRelに伴走し続けるのか / Why Does That Developer Keep Running Alongside DevRel?
nrslib
3
410
bootcamp2025_バックエンド研修_WebAPIサーバ作成.pdf
geniee_inc
0
110
Software Architecture
hschwentner
6
2.3k
One Enishi After Another
snoozer05
PRO
0
110
PHPに関数型の魂を宿す〜PHP 8.5 で実現する堅牢なコードとは〜 #phpcon_hiroshima / phpcon-hiroshima-2025
shogogg
1
240
はじめてのDSPy - 言語モデルを『プロンプト』ではなく『プログラミング』するための仕組み
masahiro_nishimi
2
550
kiroとCodexで最高のSpec駆動開発を!!数時間で web3ネイティブなミニゲームを作ってみたよ!
mashharuki
0
630
Domain-centric? Why Hexagonal, Onion, and Clean Architecture Are Answers to the Wrong Question
olivergierke
3
900
いま中途半端なSwift 6対応をするより、Default ActorやApproachable Concurrencyを有効にしてからでいいんじゃない?
yimajo
2
440
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
27
2k
A designer walks into a library…
pauljervisheath
209
24k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
BBQ
matthewcrist
89
9.8k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
RailsConf 2023
tenderlove
30
1.2k
How GitHub (no longer) Works
holman
315
140k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
The Illustrated Children's Guide to Kubernetes
chrisshort
49
51k
Faster Mobile Websites
deanohume
310
31k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Transcript
GitHub John Nunemaker MongoSF 2012 May 4, 2012 MongoDB for
Analytics A loving conversation with @jnunemaker
None
Background How hernias can be good for you
None
None
1 month Of evenings and weekends
1 year Since public launch
13 tiny servers 2 web, 6 app, 3 db, 2
queue
7-8 Million Page views per day
None
None
None
None
Implementation Imma show you how we do what we do
baby
Doing It (mostly) Live No aggregate querying
None
None
get('/track.gif') do track_service.record(...) TrackGif end
class TrackService def record(attrs) message = MessagePack.pack(attrs) @client.set(@queue, message) end
end
class TrackProcessor def run loop { process } end def
process record @client.get(@queue) end def record(message) attrs = MessagePack.unpack(message) Hit.record(attrs) end end
http://bit.ly/rt-kestrel
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
http://bit.ly/rt-counters http://bit.ly/rt-counters2
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{sid}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth Don’t say shard, don’t say shard...
Partition Hot Data Currently using collections for time frames
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
GitHub Thank you!
[email protected]
John Nunemaker MongoSF 2012 May 4,
2012 @jnunemaker