Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Understanding Geometry of Encoder-Decoder CNNs for Inverse Problems

Understanding Geometry of Encoder-Decoder CNNs for Inverse Problems

Plenary Talk, Applied Inverse Problems (AIP) conference, Grenoble, July 11th, 2019

Jong Chul Ye

July 11, 2019
Tweet

More Decks by Jong Chul Ye

Other Decks in Research

Transcript

  1. Understanding Geometry of Encoder Decoder CNN for Inverse Problems Jong

    Chul Ye, Ph.D Endowed Chair Professor BISPL - BioImaging, Signal Processing, and Learning lab. Dept. Bio & Brain Engineering Dept. Mathematical Sciences KAIST, Korea
  2. Deep Learning Revolution • Deep learning has been successfully used

    for classification, low- level computer vision, etc • Even outperforms human observers Figure modified from Kaiming He’s presentation
  3. Classical Learning vs Deep Learning Diagnosis Classical machine learning Deep

    learning (no feature engineering) Feature Engineering Esteva et al, Nature Medicine, (2019)
  4. Deep Learning Era in Medical Imaging Diabetic eye diagnosis Gulshan,

    V. et al. JAMA (2016) Skin Cancer diagnosis Esteva et al, Nature (2017) OCT diagnosis De Fauw et al, Nature Medicine (2018) Figure courtesy of X. Cao & D. Shen Image registration Image segmentation Ronneberger et al, MICCAI, 2015
  5. 6

  6. 7 Wavelet transform level 2 level 1 level 3 level

    4 Wavelet recomposition + Residual learning : Low-resolution image bypass High SNR band CNN (Kang, et al, Medical Physics 44(10))
  7. Figures from internet Extreme Sparse View CT Stationary CT Carry

    on baggage scanner Han et al, arXiv preprint arXiv:1712.10248, (2017); CT Meeting (2017)
  8. 1st view 2nd view 3rd view 4th view 5th view

    6th view 7th view 8th view 9th view
  9. FBP

  10. TV

  11. Deep Learning Pioneers in MR Kwon et al, Medical Physics,

    2017 Hammernik et al, MRM, 2018 Wang et al, ISBI, 2016 Yang et al, NIPS, 2016 Multilayer perceptron Variational network Deep learning prior ADMM-Net
  12. Variational Network (R=4) CG SENSE PI-CS: TGV Learning: VN PI

    PI-CS Learning Hammernik MRM 2018 Courtesy of Florian Knoll
  13. Hybrid Domain Learning Deep Cascade of CNNs for MRI Reconstruction

    Schlemper et al. IEEE TMI 2017 Courtesy of D. Rueckert (a) 11x Undersampled (b) CNN reconstruction (c) Ground Truth
  14. Why so popular this time ? q Accuracy: high quality

    recon > CS q Fast reconstruction time q Business model: vendor-driven training q Interpretable models q Flexibility: more than recon Imaging time Reconstruction time Conventional Compressed Sensing Machine Learning
  15. Too Simple to Analyze..? Convolution & pooling à stone age

    tools of signal processing What do they do ?
  16. Ye et al, SIAM J. Imaging Sciences, 2018; Ye et

    al, ICML, 2019 Understanding Geometry of CNN
  17. Classical Methods for Inverse Problems Synthesis frame Analysis frame coefficients

    Step 1: Signal Representation x = X i hbi, xi˜ bi <latexit sha1_base64="1xOFabKTay95z7c6ZUXCSJWXZAE=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0UQkZKooBuh4MZlC/YBTQiTyaQdOpmEmYm0hIKf4MZfceNCEbdu3Pk3TpMutPXAhTPn3Mvce/yEUaks69soLS2vrK6V1ysbm1vbO+buXlvGqcCkhWMWi66PJGGUk5aiipFuIgiKfEY6/vBm6nfuiZA05ndqnBA3Qn1OQ4qR0pJnnoyuHZlGHoXQYYj3GYG+R0/hyBHFy1GUBbnomVWrZuWAi8SekSqYoeGZX04Q4zQiXGGGpOzZVqLcDAlFMSOTipNKkiA8RH3S05SjiEg3y2+awCOtBDCMhS6uYK7+nshQJOU48nVnhNRAzntT8T+vl6rwys0oT1JFOC4+ClMGVQynAcGACoIVG2uCsKB6V4gHSCCsdIwVHYI9f/IiaZ/V7POa1byo1psPRRxlcAAOwTGwwSWog1vQAC2AwSN4Bq/gzXgyXox346NoLRmzCPfBHxifP6mnndg=</latexit>
  18. Eg. Compressed Sensing Classical Methods for Inverse Problems Step 2:

    Basis Search by Optimization x = X i ˜ bi hbi, xi <latexit sha1_base64="dRyoeK2luEuIb3X8ywuvlvflFPU=">AAACEnicbZBNS8MwGMdTX+d8q3r0EhyCgoxWBb0IQy8eJ7gXWEtJ03QLS9OSpLJR9hm8+FW8eFDEqydvfhvTrgfd/EPgl//zPCTP308Ylcqyvo2FxaXlldXKWnV9Y3Nr29zZbcs4FZi0cMxi0fWRJIxy0lJUMdJNBEGRz0jHH97k9c4DEZLG/F6NE+JGqM9pSDFS2vLM49GVI9PIo9BRlAUE+jkyxPus4BM4ckRx88yaVbcKwXmwS6iBUk3P/HKCGKcR4QozJGXPthLlZkgoihmZVJ1UkgThIeqTnkaOIiLdrFhpAg+1E8AwFvpwBQv390SGIinHka87I6QGcraWm//VeqkKL92M8iRVhOPpQ2HKoIphng8MqCBYsbEGhAXVf4V4gATCSqdY1SHYsyvPQ/u0bp/VrbvzWuO6jKMC9sEBOAI2uAANcAuaoAUweATP4BW8GU/Gi/FufExbF4xyZg/8kfH5AyCNnR8=</latexit>
  19. Our Theoretical Findings y = X i hbi(x), xi˜ bi(x)

    <latexit sha1_base64="DaaFmbtzayW3V2tBvW3rbADydJY=">AAACGXicbZDLSsNAFIYnXmu9RV26GSxCBSmJCroRim5cVrAXaEKYTCbt0MkkzEykIfQ13Pgqblwo4lJXvo3TNoK2/jDw851zOHN+P2FUKsv6MhYWl5ZXVktr5fWNza1tc2e3JeNUYNLEMYtFx0eSMMpJU1HFSCcRBEU+I21/cD2ut++JkDTmdypLiBuhHqchxUhp5JlWdunINPIohA5DvMcI9D1aHR4dw6EjpsBRlAU/3DMrVs2aCM4buzAVUKjhmR9OEOM0IlxhhqTs2lai3BwJRTEjo7KTSpIgPEA90tWWo4hIN59cNoKHmgQwjIV+XMEJ/T2Ro0jKLPJ1Z4RUX87WxvC/WjdV4YWbU56kinA8XRSmDKoYjmOCARUEK5Zpg7Cg+q8Q95FAWOkwyzoEe/bkedM6qdmnNev2rFK/KuIogX1wAKrABuegDm5AAzQBBg/gCbyAV+PReDbejPdp64JRzOyBPzI+vwEaXJ8Y</latexit> Ye et al, SIIMS, 2018; Ye et al, ICML, 2019
  20. analysis basis y = X i hbi(x), xi˜ bi(x) <latexit

    sha1_base64="DaaFmbtzayW3V2tBvW3rbADydJY=">AAACGXicbZDLSsNAFIYnXmu9RV26GSxCBSmJCroRim5cVrAXaEKYTCbt0MkkzEykIfQ13Pgqblwo4lJXvo3TNoK2/jDw851zOHN+P2FUKsv6MhYWl5ZXVktr5fWNza1tc2e3JeNUYNLEMYtFx0eSMMpJU1HFSCcRBEU+I21/cD2ut++JkDTmdypLiBuhHqchxUhp5JlWdunINPIohA5DvMcI9D1aHR4dw6EjpsBRlAU/3DMrVs2aCM4buzAVUKjhmR9OEOM0IlxhhqTs2lai3BwJRTEjo7KTSpIgPEA90tWWo4hIN59cNoKHmgQwjIV+XMEJ/T2Ro0jKLPJ1Z4RUX87WxvC/WjdV4YWbU56kinA8XRSmDKoYjmOCARUEK5Zpg7Cg+q8Q95FAWOkwyzoEe/bkedM6qdmnNev2rFK/KuIogX1wAKrABuegDm5AAzQBBg/gCbyAV+PReDbejPdp64JRzOyBPzI+vwEaXJ8Y</latexit> Encoder Our Theoretical Findings Ye et al, SIIMS, 2018; Ye et al, ICML, 2019
  21. analysis basis synthesis basis y = X i hbi(x), xi˜

    bi(x) <latexit sha1_base64="DaaFmbtzayW3V2tBvW3rbADydJY=">AAACGXicbZDLSsNAFIYnXmu9RV26GSxCBSmJCroRim5cVrAXaEKYTCbt0MkkzEykIfQ13Pgqblwo4lJXvo3TNoK2/jDw851zOHN+P2FUKsv6MhYWl5ZXVktr5fWNza1tc2e3JeNUYNLEMYtFx0eSMMpJU1HFSCcRBEU+I21/cD2ut++JkDTmdypLiBuhHqchxUhp5JlWdunINPIohA5DvMcI9D1aHR4dw6EjpsBRlAU/3DMrVs2aCM4buzAVUKjhmR9OEOM0IlxhhqTs2lai3BwJRTEjo7KTSpIgPEA90tWWo4hIN59cNoKHmgQwjIV+XMEJ/T2Ro0jKLPJ1Z4RUX87WxvC/WjdV4YWbU56kinA8XRSmDKoYjmOCARUEK5Zpg7Cg+q8Q95FAWOkwyzoEe/bkedM6qdmnNev2rFK/KuIogX1wAKrABuegDm5AAzQBBg/gCbyAV+PReDbejPdp64JRzOyBPzI+vwEaXJ8Y</latexit> Encoder Decoder Our Theoretical Findings Ye et al, SIIMS, 2018; Ye et al, ICML, 2019
  22. Linear Encoder-Decoder (ED) CNN Learned filters y = ˜ BB>x

    = X i hx, bi i˜ bi <latexit sha1_base64="bo3reUJLRRRgiLys4OrWvNpVArY=">AAACJ3icbVBNSwMxEM36bf2qevQSLIIHKbsq6KUievGoaK3QrSWbzrah2eySzIpl8d948a94EVREj/4T03YP2joQePPePCbzgkQKg6775UxMTk3PzM7NFxYWl5ZXiqtr1yZONYcqj2WsbwJmQAoFVRQo4SbRwKJAQi3onvb12h1oI2J1hb0EGhFrKxEKztBSzeJRr+KjkC2gJ/Tk1sc4ofe0Qn2TRk1BfclUWwK936FBv9XDNndYqlksuWV3UHQceDkokbzOm8VXvxXzNAKFXDJj6p6bYCNjGgWX8FDwUwMJ413WhrqFikVgGtngzge6ZZkWDWNtn0I6YH87MhYZ04sCOxkx7JhRrU/+p9VTDA8bmVBJiqD4cFGYSoox7YdGW0IDR9mzgHEt7F8p7zDNONpoCzYEb/TkcXC9W/b2yu7Ffun4Mo9jjmyQTbJNPHJAjskZOSdVwskjeSZv5N15cl6cD+dzODrh5J518qec7x9ZY6R3</latexit> pooling un-pooling
  23. Linear E-D CNN w/ Skipped Connection more redundant expression Learned

    filters y = ˜ BB>x = X i hx, bi i˜ bi <latexit sha1_base64="bo3reUJLRRRgiLys4OrWvNpVArY=">AAACJ3icbVBNSwMxEM36bf2qevQSLIIHKbsq6KUievGoaK3QrSWbzrah2eySzIpl8d948a94EVREj/4T03YP2joQePPePCbzgkQKg6775UxMTk3PzM7NFxYWl5ZXiqtr1yZONYcqj2WsbwJmQAoFVRQo4SbRwKJAQi3onvb12h1oI2J1hb0EGhFrKxEKztBSzeJRr+KjkC2gJ/Tk1sc4ofe0Qn2TRk1BfclUWwK936FBv9XDNndYqlksuWV3UHQceDkokbzOm8VXvxXzNAKFXDJj6p6bYCNjGgWX8FDwUwMJ413WhrqFikVgGtngzge6ZZkWDWNtn0I6YH87MhYZ04sCOxkx7JhRrU/+p9VTDA8bmVBJiqD4cFGYSoox7YdGW0IDR9mzgHEt7F8p7zDNONpoCzYEb/TkcXC9W/b2yu7Ffun4Mo9jjmyQTbJNPHJAjskZOSdVwskjeSZv5N15cl6cD+dzODrh5J518qec7x9ZY6R3</latexit>
  24. Deep Convolutional Framelets x = ˜ BB>x = X i

    hx, bi i˜ bi <latexit sha1_base64="9EuOyjKGC2x9hAgBpajvIdywLlA=">AAACJ3icbVBNSwMxEM36bf2qevQSLIIHKbsq6EWRevGoaK3QXZdsOq2h2eySzEpL6b/x4l/xIqiIHv0npu0etDoQePPePCbzolQKg6776UxMTk3PzM7NFxYWl5ZXiqtr1ybJNIcqT2SibyJmQAoFVRQo4SbVwOJIQi1qnw702j1oIxJ1hd0Ugpi1lGgKztBSYfG4c+SjkA2gFVq59TFJaYceUd9kcSioL5lqSaCdHRoNWj1qc4elwmLJLbvDon+Bl4MSyes8LL74jYRnMSjkkhlT99wUgx7TKLiEfsHPDKSMt1kL6hYqFoMJesM7+3TLMg3aTLR9CumQ/enosdiYbhzZyZjhnRnXBuR/Wj3D5mHQEyrNEBQfLWpmkmJCB6HRhtDAUXYtYFwL+1fK75hmHG20BRuCN37yX3C9W/b2yu7FfunkMo9jjmyQTbJNPHJATsgZOSdVwskDeSKv5M15dJ6dd+djNDrh5J518qucr29XoqR2</latexit> Perfect reconstruction Ye et al, SIIMS 2018; Ye et al, ICML 2019 Frame conditions w skipped connection w/o skipped connection
  25. Deep Convolutional Framelets x = ˜ BB>x = X i

    hx, bi i˜ bi <latexit sha1_base64="9EuOyjKGC2x9hAgBpajvIdywLlA=">AAACJ3icbVBNSwMxEM36bf2qevQSLIIHKbsq6EWRevGoaK3QXZdsOq2h2eySzEpL6b/x4l/xIqiIHv0npu0etDoQePPePCbzolQKg6776UxMTk3PzM7NFxYWl5ZXiqtr1ybJNIcqT2SibyJmQAoFVRQo4SbVwOJIQi1qnw702j1oIxJ1hd0Ugpi1lGgKztBSYfG4c+SjkA2gFVq59TFJaYceUd9kcSioL5lqSaCdHRoNWj1qc4elwmLJLbvDon+Bl4MSyes8LL74jYRnMSjkkhlT99wUgx7TKLiEfsHPDKSMt1kL6hYqFoMJesM7+3TLMg3aTLR9CumQ/enosdiYbhzZyZjhnRnXBuR/Wj3D5mHQEyrNEBQfLWpmkmJCB6HRhtDAUXYtYFwL+1fK75hmHG20BRuCN37yX3C9W/b2yu7FfunkMo9jjmyQTbJNPHJATsgZOSdVwskDeSKv5M15dJ6dd+djNDrh5J518qucr29XoqR2</latexit> Perfect reconstruction Ye et al, SIAM J. Imaging Science, 2018 Frame conditions w skipped connection w/o skipped connection
  26. Role of ReLUs? Generator for Multiple Expressions y = ˜

    B(x)B(x)>x = X i hx, bi(x)i˜ bi(x) <latexit sha1_base64="T/1m1u26m8O8vLHErH3u6EKQhAM=">AAACM3icbVDLSgMxFM3Ud31VXboJFkFByowKuhGKbsSVotVCpw6Z9LYNZjJDckdaSv/JjT/iQhAXirj1H0zbWaj1QsLhPEjuCRMpDLrui5ObmJyanpmdy88vLC4tF1ZWr02cag4VHstYV0NmQAoFFRQooZpoYFEo4Sa8OxnoN/egjYjVFXYTqEespURTcIaWCgpn3SMfhWwAPd7qbA+vWx/jhHboEfVNGgWC+pKplgTa2aFhIAY2X4+YLDpig0LRLbnDoePAy0CRZHMeFJ78RszTCBRyyYypeW6C9R7TKLiEft5PDSSM37EW1CxULAJT7w137tNNyzRoM9b2KKRD9meixyJjulFonRHDtvmrDcj/tFqKzcN6T6gkRVB89FAzlRRjOiiQNoQGjrJrAeNa2L9S3maacbQ1520J3t+Vx8H1bsnbK7kX+8XyZVbHLFknG2SLeOSAlMkpOScVwskDeSZv5N15dF6dD+dzZM05WWaN/Brn6xvQsKgT</latexit> ⌃l(x) = 2 6 6 6 4 1 0 · · · 0 0 2 · · · 0 . . . . . . ... . . . 0 0 · · · ml 3 7 7 7 5 <latexit sha1_base64="1HHS4n8UkvGQcnzeL2YdPrnnXeg=">AAACkXicbVHLSgMxFM2M7/qqunQTLIpuyowK6kIpuhHcKFoVmjpkMrdtMMkMSUYsQ//H73Hn35i2g4/qhQvnnnNfuYkzwY0Ngg/Pn5qemZ2bX6gsLi2vrFbX1u9NmmsGTZaKVD/G1IDgCpqWWwGPmQYqYwEP8fPFUH94AW14qu5sP4O2pF3FO5xR66io+kZueVfSJ7H7uodPMYmhy1URS2o1fx1gYoZqFOIdHDgnLEmtGQWEjJlxwv6kWCEvZfQNkt+MSwom+5btChkJNxxU8rVKVK0F9WBk+C8IS1BDpV1H1XeSpCyXoCwT1JhWGGS2XVBtORMwqJDcQEbZM+1Cy0FFJZh2MbroAG87JsGdVDtXFo/YnxUFlcb0Zewy3X49M6kNyf+0Vm47x+2Cqyy3oNh4UCcX2KZ4+D044RqYFX0HKNPc7YpZj2rKrPvEijtCOPnkv+B+vx4e1IObw1rjvDzHPNpEW2gXhegINdAlukZNxLwV79A79c78Df/Eb/hlru+VNRvol/lXn1/Lv9k=</latexit> Input dependent {0,1} matrix --> Input adaptivity
  27. Input Space Partitioning for Multiple Expressions A CNN performs automatic

    assignment of distinct linear representation depending on input
  28. Expressivity of E-D CNN # of representation # of network

    elements # of channel Network depth
  29. Expressivity of E-D CNN # of representation # of network

    elements # of channel Network depth Skipped connection
  30. Lipschitz Continuity K = max p Kp, Kp = k

    ˜ B(zp)B(zp)>k2 <latexit sha1_base64="zV0QFc8bcwR20HLOVcDQeQMOtmY=">AAACIHicbZDLSgMxFIYz9V5voy7dBItQQcpMFeqmUOpGcKNgbaFTh0wmtaGZmZicEWv1Udz4Km5cKKI7fRrTy0KtBxI+/v8ckvMHUnANjvNpZaamZ2bn5heyi0vLK6v22vq5TlJFWY0mIlGNgGgmeMxqwEGwhlSMRIFg9aB7OPDr10xpnsRn0JOsFZHLmLc5JWAk3y4dl72I3PgSH/ty17tKSTggXMbenQdchAxX87e+3BndFx4k0rvzi76dcwrOsPAkuGPIoXGd+PaHFyY0jVgMVBCtm64jodUnCjgV7D7rpZpJQrvkkjUNxiRiutUfLniPt40S4naizIkBD9WfE30Sad2LAtMZEejov95A/M9rptA+aPV5LFNgMR091E4FhgQP0sIhV4yC6BkgVHHzV0w7RBEKJtOsCcH9u/IknBcL7l7BOd3PVarjOObRJtpCeeSiEqqgI3SCaoiiB/SEXtCr9Wg9W2/W+6g1Y41nNtCvsr6+AcwXoYQ=</latexit> z1 <latexit sha1_base64="Ob3+IEXFhF5uWyRIGKNYQ89lNRY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK9gPaUDbbTbt0swm7E6GG/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+86t5dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEPZo2k</latexit> zp <latexit sha1_base64="Q3WIlMLDjf+qfP58xUVUuKL5KD4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK9gPaUDbbSbt0swm7G6GG/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+olvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+86t5dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AFu4o3j</latexit> Related to the generalizability Dependent on the Local Lipschitz
  31. Optimization Issue • Optimization Landscape • All local minimizers are

    global minimizers • Ex) overparameterized network • Implicit bias • Specific global minimizers are determine d by the optimization algorithms Q) Nonconvex optimization problem à Can we prove convergence ? o <latexit sha1_base64="4DjPcWEGh5PQIKL0eIUnsOTwihE=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooCspuHFZwdZiO5RMmmlD8xiSjFCG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybknSjgz1ve/vdLK6tr6RnmzsrW9s7tX3T9oG5VqQltEcaU7ETaUM0lblllOO4mmWEScPkTjm9x/eKLaMCXv7SShocBDyWJGsHXSY09gO4riTE371Zpf92dAyyQoSA0KNPvVr95AkVRQaQnHxnQDP7FhhrVlhNNppZcammAyxkPadVRiQU2YzRJP0YlTBihW2j1p0Uz9vZFhYcxERG4yT2gWvVz8z+umNr4KMyaT1FJJ5h/FKUdWofx8NGCaEssnjmCimcuKyAhrTKwrqeJKCBZPXibts3pwXvfvLmqN66KOMhzBMZxCAJfQgFtoQgsISHiGV3jzjPfivXsf89GSV+wcwh94nz/vApER</latexit> x <latexit sha1_base64="hUTvfx5dXOHFo5uS6vfKoPsIiQ8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooCspuHFZwT6wLSWT3mlDM5khyYhl6F+4caGIW//GnX9jpp2Fth4IHM65l5x7/FhwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo4SxbDBIhGptk81Ci6xYbgR2I4V0tAX2PLHN5nfekSleSTvzSTGXkiHkgecUWOlh25IzcgP0qdpv1xxq+4MZJl4OalAjnq//NUdRCwJURomqNYdz41NL6XKcCZwWuomGmPKxnSIHUslDVH30lniKTmxyoAEkbJPGjJTf2+kNNR6Evp2MkuoF71M/M/rJCa46qVcxolByeYfBYkgJiLZ+WTAFTIjJpZQprjNStiIKsqMLalkS/AWT14mzbOqd1517y4qteu8jiIcwTGcggeXUINbqEMDGEh4hld4c7Tz4rw7H/PRgpPvHMIfOJ8//K+RGg==</latexit> o <latexit sha1_base64="4DjPcWEGh5PQIKL0eIUnsOTwihE=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooCspuHFZwdZiO5RMmmlD8xiSjFCG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybknSjgz1ve/vdLK6tr6RnmzsrW9s7tX3T9oG5VqQltEcaU7ETaUM0lblllOO4mmWEScPkTjm9x/eKLaMCXv7SShocBDyWJGsHXSY09gO4riTE371Zpf92dAyyQoSA0KNPvVr95AkVRQaQnHxnQDP7FhhrVlhNNppZcammAyxkPadVRiQU2YzRJP0YlTBihW2j1p0Uz9vZFhYcxERG4yT2gWvVz8z+umNr4KMyaT1FJJ5h/FKUdWofx8NGCaEssnjmCimcuKyAhrTKwrqeJKCBZPXibts3pwXvfvLmqN66KOMhzBMZxCAJfQgFtoQgsISHiGV3jzjPfivXsf89GSV+wcwh94nz/vApER</latexit> o <latexit sha1_base64="4DjPcWEGh5PQIKL0eIUnsOTwihE=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooCspuHFZwdZiO5RMmmlD8xiSjFCG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybknSjgz1ve/vdLK6tr6RnmzsrW9s7tX3T9oG5VqQltEcaU7ETaUM0lblllOO4mmWEScPkTjm9x/eKLaMCXv7SShocBDyWJGsHXSY09gO4riTE371Zpf92dAyyQoSA0KNPvVr95AkVRQaQnHxnQDP7FhhrVlhNNppZcammAyxkPadVRiQU2YzRJP0YlTBihW2j1p0Uz9vZFhYcxERG4yT2gWvVz8z+umNr4KMyaT1FJJ5h/FKUdWofx8NGCaEssnjmCimcuKyAhrTKwrqeJKCBZPXibts3pwXvfvLmqN66KOMhzBMZxCAJfQgFtoQgsISHiGV3jzjPfivXsf89GSV+wcwh94nz/vApER</latexit> x <latexit sha1_base64="hUTvfx5dXOHFo5uS6vfKoPsIiQ8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooCspuHFZwT6wLSWT3mlDM5khyYhl6F+4caGIW//GnX9jpp2Fth4IHM65l5x7/FhwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo4SxbDBIhGptk81Ci6xYbgR2I4V0tAX2PLHN5nfekSleSTvzSTGXkiHkgecUWOlh25IzcgP0qdpv1xxq+4MZJl4OalAjnq//NUdRCwJURomqNYdz41NL6XKcCZwWuomGmPKxnSIHUslDVH30lniKTmxyoAEkbJPGjJTf2+kNNR6Evp2MkuoF71M/M/rJCa46qVcxolByeYfBYkgJiLZ+WTAFTIjJpZQprjNStiIKsqMLalkS/AWT14mzbOqd1517y4qteu8jiIcwTGcggeXUINbqEMDGEh4hld4c7Tz4rw7H/PRgpPvHMIfOJ8//K+RGg==</latexit> o <latexit sha1_base64="4DjPcWEGh5PQIKL0eIUnsOTwihE=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooCspuHFZwdZiO5RMmmlD8xiSjFCG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybknSjgz1ve/vdLK6tr6RnmzsrW9s7tX3T9oG5VqQltEcaU7ETaUM0lblllOO4mmWEScPkTjm9x/eKLaMCXv7SShocBDyWJGsHXSY09gO4riTE371Zpf92dAyyQoSA0KNPvVr95AkVRQaQnHxnQDP7FhhrVlhNNppZcammAyxkPadVRiQU2YzRJP0YlTBihW2j1p0Uz9vZFhYcxERG4yT2gWvVz8z+umNr4KMyaT1FJJ5h/FKUdWofx8NGCaEssnjmCimcuKyAhrTKwrqeJKCBZPXibts3pwXvfvLmqN66KOMhzBMZxCAJfQgFtoQgsISHiGV3jzjPfivXsf89GSV+wcwh94nz/vApER</latexit> x <latexit sha1_base64="hUTvfx5dXOHFo5uS6vfKoPsIiQ8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooCspuHFZwT6wLSWT3mlDM5khyYhl6F+4caGIW//GnX9jpp2Fth4IHM65l5x7/FhwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo4SxbDBIhGptk81Ci6xYbgR2I4V0tAX2PLHN5nfekSleSTvzSTGXkiHkgecUWOlh25IzcgP0qdpv1xxq+4MZJl4OalAjnq//NUdRCwJURomqNYdz41NL6XKcCZwWuomGmPKxnSIHUslDVH30lniKTmxyoAEkbJPGjJTf2+kNNR6Evp2MkuoF71M/M/rJCa46qVcxolByeYfBYkgJiLZ+WTAFTIjJpZQprjNStiIKsqMLalkS/AWT14mzbOqd1517y4qteu8jiIcwTGcggeXUINbqEMDGEh4hld4c7Tz4rw7H/PRgpPvHMIfOJ8//K+RGg==</latexit> o <latexit sha1_base64="4DjPcWEGh5PQIKL0eIUnsOTwihE=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooCspuHFZwdZiO5RMmmlD8xiSjFCG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybknSjgz1ve/vdLK6tr6RnmzsrW9s7tX3T9oG5VqQltEcaU7ETaUM0lblllOO4mmWEScPkTjm9x/eKLaMCXv7SShocBDyWJGsHXSY09gO4riTE371Zpf92dAyyQoSA0KNPvVr95AkVRQaQnHxnQDP7FhhrVlhNNppZcammAyxkPadVRiQU2YzRJP0YlTBihW2j1p0Uz9vZFhYcxERG4yT2gWvVz8z+umNr4KMyaT1FJJ5h/FKUdWofx8NGCaEssnjmCimcuKyAhrTKwrqeJKCBZPXibts3pwXvfvLmqN66KOMhzBMZxCAJfQgFtoQgsISHiGV3jzjPfivXsf89GSV+wcwh94nz/vApER</latexit> x <latexit sha1_base64="hUTvfx5dXOHFo5uS6vfKoPsIiQ8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooCspuHFZwT6wLSWT3mlDM5khyYhl6F+4caGIW//GnX9jpp2Fth4IHM65l5x7/FhwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo4SxbDBIhGptk81Ci6xYbgR2I4V0tAX2PLHN5nfekSleSTvzSTGXkiHkgecUWOlh25IzcgP0qdpv1xxq+4MZJl4OalAjnq//NUdRCwJURomqNYdz41NL6XKcCZwWuomGmPKxnSIHUslDVH30lniKTmxyoAEkbJPGjJTf2+kNNR6Evp2MkuoF71M/M/rJCa46qVcxolByeYfBYkgJiLZ+WTAFTIjJpZQprjNStiIKsqMLalkS/AWT14mzbOqd1517y4qteu8jiIcwTGcggeXUINbqEMDGEh4hld4c7Tz4rw7H/PRgpPvHMIfOJ8//K+RGg==</latexit> x <latexit sha1_base64="hUTvfx5dXOHFo5uS6vfKoPsIiQ8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooCspuHFZwT6wLSWT3mlDM5khyYhl6F+4caGIW//GnX9jpp2Fth4IHM65l5x7/FhwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo4SxbDBIhGptk81Ci6xYbgR2I4V0tAX2PLHN5nfekSleSTvzSTGXkiHkgecUWOlh25IzcgP0qdpv1xxq+4MZJl4OalAjnq//NUdRCwJURomqNYdz41NL6XKcCZwWuomGmPKxnSIHUslDVH30lniKTmxyoAEkbJPGjJTf2+kNNR6Evp2MkuoF71M/M/rJCa46qVcxolByeYfBYkgJiLZ+WTAFTIjJpZQprjNStiIKsqMLalkS/AWT14mzbOqd1517y4qteu8jiIcwTGcggeXUINbqEMDGEh4hld4c7Tz4rw7H/PRgpPvHMIfOJ8//K+RGg==</latexit> x <latexit sha1_base64="hUTvfx5dXOHFo5uS6vfKoPsIiQ8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooCspuHFZwT6wLSWT3mlDM5khyYhl6F+4caGIW//GnX9jpp2Fth4IHM65l5x7/FhwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo4SxbDBIhGptk81Ci6xYbgR2I4V0tAX2PLHN5nfekSleSTvzSTGXkiHkgecUWOlh25IzcgP0qdpv1xxq+4MZJl4OalAjnq//NUdRCwJURomqNYdz41NL6XKcCZwWuomGmPKxnSIHUslDVH30lniKTmxyoAEkbJPGjJTf2+kNNR6Evp2MkuoF71M/M/rJCa46qVcxolByeYfBYkgJiLZ+WTAFTIjJpZQprjNStiIKsqMLalkS/AWT14mzbOqd1517y4qteu8jiIcwTGcggeXUINbqEMDGEh4hld4c7Tz4rw7H/PRgpPvHMIfOJ8//K+RGg==</latexit>
  32. Regularized Recon vs. Deep Recon Diagnosis Classical Regularized Recon (basis

    engineering) Deep Recon (no basis engineering) Basis Engineering
  33. Focused / Plane Wave Ultrasound Imaging Focused Imaging Plane Wave

    Imaging Couade M, JVDI, 2015 Yoon et al, TMI, 2018
  34. Adaptive Beamformer Conventional Beamforming Pipeline  I Q = 

    zl[n] H(zl)[n] <latexit sha1_base64="Mv7jnJQUjhxiLpE3LDXNSJ47/J8=">AAACSnicbZBPSwMxEMWztWpd/6169BIsQr2UXRX0IhS91JuCtYXuUrLptA3NZpckK9aln8+LJ29+CC8eFPFiWovY1oHA4zdvmMkLE86Udt0XK7eQX1xaLqzYq2vrG5vO1vatilNJoUZjHstGSBRwJqCmmebQSCSQKORQD/sXo379DqRisbjRgwSCiHQF6zBKtEEth/ghdJnIwohoye6Hl9j38TX2QbR/GT7DMy77ocWbIjBe2zeoRwnPqsOSoQcG21PTLafolt1x4XnhTUQRTeqq5Tz77ZimEQhNOVGq6bmJDjIiNaMchrafKkgI7ZMuNI0UJAIVZOMohnjfkDbuxNI8ofGY/p3ISKTUIAqNc3S4mu2N4H+9Zqo7p0HGRJJqEPRnUSflWMd4lCtuMwlU84ERhEpmbsW0RySh2qRvmxC82S/Pi9vDsndUdq+Pi5XzSRwFtIv2UAl56ARVUBVdoRqi6BG9onf0YT1Zb9an9fVjzVmTmR00Vbn8N6l4s94=</latexit> Data specific weights
  35. Deep Beamformer Khan et al, MICCAI (accepted), 2019 Adaptive and

    Compressive Deep Beamformer Conventional Beamforming Pipeline Input partitioning à Data specific representation
  36. k-Space Deep Learning Han et al, IEEE Trans. Medical Imaging

    (in press), 2019 Lee et al, MRM (in press), 2019
  37. Duality between Sparsity and Low-Rankness Ye et al, IEEE Trans.

    Information Theory, 2017;Jin et al, IEEE TCI, 2017; Lee et al, MRM, 2017
  38. Annihilating Filter-based Low-rank Hankel Matrix Approach (ALOHA) Jin KH et

    al IEEE TCI, 2016, Lee et al, MRM, 2015; Ye et al, IEEE TIT, 2016
  39. ˜ T = I : Non-local basis : Local basis

    :Nonlocal basis : Local basis Deep Convolutional Framelets (Y, Han, Cha, SIIMS, 2018) ˜ T = I <latexit sha1_base64="nsw6gd0e+4ZO1ci14Ht6KPpot+8=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm8EiuCqJCroRim50V6E3aGKZTCbt0MmFmYlQQ/FV3LhQxK3v4c63cdJmoa0/DHz85xzOmd9LOJPKsr6NhcWl5ZXV0lp5fWNza9vc2W3JOBWENknMY9HxsKScRbSpmOK0kwiKQ4/Ttje8zuvtByoki6OGGiXUDXE/YgEjWGmrZ+47dckcxbhPc7pvoEt02zMrVtWaCM2DXUAFCtV75pfjxyQNaaQIx1J2bStRboaFYoTTcdlJJU0wGeI+7WqMcEilm02uH6Mj7fgoiIV+kUIT9/dEhkMpR6GnO0OsBnK2lpv/1bqpCi7cjEVJqmhEpouClCMVozwK5DNBieIjDZgIpm9FZIAFJkoHVtYh2LNfnofWSdU+rVp3Z5XaVRFHCQ7gEI7BhnOowQ3UoQkEHuEZXuHNeDJejHfjY9q6YBQze/BHxucPPbyUaw==</latexit>
  40. ˜ T = I : Non-local basis : Local basis

    : Pooling : Convolution filters Deep Convolutional Framelets (Y, Han, Cha, SIIMS, 2018) ˜ T = I <latexit sha1_base64="nsw6gd0e+4ZO1ci14Ht6KPpot+8=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm8EiuCqJCroRim50V6E3aGKZTCbt0MmFmYlQQ/FV3LhQxK3v4c63cdJmoa0/DHz85xzOmd9LOJPKsr6NhcWl5ZXV0lp5fWNza9vc2W3JOBWENknMY9HxsKScRbSpmOK0kwiKQ4/Ttje8zuvtByoki6OGGiXUDXE/YgEjWGmrZ+47dckcxbhPc7pvoEt02zMrVtWaCM2DXUAFCtV75pfjxyQNaaQIx1J2bStRboaFYoTTcdlJJU0wGeI+7WqMcEilm02uH6Mj7fgoiIV+kUIT9/dEhkMpR6GnO0OsBnK2lpv/1bqpCi7cjEVJqmhEpouClCMVozwK5DNBieIjDZgIpm9FZIAFJkoHVtYh2LNfnofWSdU+rVp3Z5XaVRFHCQ7gEI7BhnOowQ3UoQkEHuEZXuHNeDJejHfjY9q6YBQze/BHxucPPbyUaw==</latexit> Hd(f) Hd(f) = ˜ T ˜ T C C = T Hd(f) C = T (f ~ ) Encoder: Unlifting: f = (˜C) ~ ⌧(˜ ) convolution pooling un-pooling convolution Decoder:
  41. EPI Ghost Artifact Correction Gx RO G y PE G

    z SS R F Ghost artifact image In EPI, Gradient is distorted by eddy currents and this causes phase shift Distorted gradient FT Even and odd echo mismatch causes ghost artifact! Phase shift
  42. k-space Deep Learning for EPI Ghost Correction Image domain loss

    L2 loss is calculated on the image domain k-space (with Ghost) e eo o … e e o o … ALOHA IFT e e o o … Coil 1 … coil P Coil 1 … coil P Coil 1 … coil P Neural network k-space (with Ghost) e e o o … e e o o … IFT e e o o … Coil 1 … coil P Coil 1 … coil P Coil 1 … coil P k-space learning Network Input Network Label 34 Lee et al, MRM (in press), 2019
  43. 7T EPI result (R=2) ALOHA Ghost image Half ROI learning

    With Reference PEC-SENSE Proposed (Full ROI) GSR : 10.48% GSR : 9.71% GSR : 15.04% GSR : 8.80% GSR : 4.92% 49 Lee et al, MRM (in press), 2019
  44. Improving U-Net Ye et al, SIAM J. Imaging Science, 2018

    Han et al, IEEE Trans. Medical Imaging, 2018 Yoo et al, SIAM J. Applied Math, 2019
  45. Problem of U-net Pooling does NOT satisfy the frame condition

    JC Ye et al, SIAM Journal Imaging Sciences, 2018 Y. Han et al, TMI, 2018. ext > ext = I + > 6= I
  46. Improving U-net using Deep Conv Framelets • Dual Frame U-net

    • Tight Frame U-net JC Ye et al, SIAM Journal Imaging Sciences, 2018 Y. Han and J. C. Ye, TMI, 2018
  47. U-Net versus Dual Frame U-Net Y. Han and J. C.

    Ye, TMI, 2018; Yoo et al, SIJAM, 2018
  48. Summary • Deep learning is a novel signal representation using

    combinatorial framelets • ReLUs generate multiple linear representation by partitioning the input space • Local Lipschitz controls the global Liptschiz continuity • Skipped connection improves the optimization landscape • Black-box nature of neural networks have been being unveiled.
  49. Outlooks q End-to-End AI for radiological imaging Ø From AI-powered

    image acquisition to diagnosis for clear and rapid radiological imaging Existing AI Solutions: Diagnosis Our future: from acquisition to diagnosis
  50. Acknowledgement • Daniel Rueckert (Imperial College) • Florian Knoll (NYU)

    • Fang Liu (Univ. of Wisconsin) • Mehmet Akcakaya (Univ. of Minnesota) • Dong Liang (SIAT, China) • Dinggang Shen (UNC) • Peder Larson (UCSF) • Grant – NRF of Korea – Ministry of Trade Industry and Energy • Hyunwook Park (KAIST) • Sung-hong Park (KAIST) • Jongho Lee (SNU) • Doshik Hwang (Yonsei Univ) • Won-Jin Moon (KonkukUniv Medical Center) • Eungyeop Kim (Gachon Univ. Medical Center) • Leonard Sunwoo (SNUBH) • Kyuhwan Jung (Vuno)
  51. References 1.Ye, Jong Chul, and Woon Kyoung Sung. "Understanding Geometry

    of Encoder-Decoder CNNs." International Conference on Machine Learning (ICML), 2019. 2.Jong Chul Ye, Yoseob Han and Eunju Cha, "Deep convolutional framelets: a general deep learning framework for inverse problems", SIAM Journal on Imaging Sciences 11(2), 991–1048, 2018. 3. Yoseob Han and Jong Chul Ye,"Framing U-Net via Deep Convolutional Framelets: Application to Sparse-view CT", IEEE Trans. on Medical Imaging, vol. 37, no. 6, pp. 1418-1429, June, 2018. 4. Yoseob Han, Leonard Sunwoo, and Jong Chul Ye, "k-Space Deep Learning for Accelerated MRI", IEEE Trans. on Medical Imaging (in press), 2019 5. Juyoung Lee, Yoseob Han, Jae-Kyun Ryu, Jang-Yeon Park and Jong Chul Ye, "k-Space Deep Learning for Reference-free EPI Ghost Correction", Magnetic Resonance in Medicine (in press), 2019 6. Eunhee Kang, Won Chang, Jaejun Yoo, and Jong Chul Ye,"Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network", IEEE Trans. on Medical Imaging, vol. 37, no.6, pp. 1358-1369, 2018. 7. Eunhee Kang, Junhong Min and Jong Chul Ye, " A Deep Convolutional Neural Network using Directional Wavelets for Low-dose X- ray CT Reconstruction", Medical Physics 44.10 (2017). 8.Jong Chul Ye, Jong Min Kim, Kyong Hwan Jin and Kiryung Lee, "Compressive sampling using annihilating filter-based low-rank interpolation", IEEE Trans. on Information Theory, vol. 63, no. 2, pp.777-801, Feb. 2017. 9. Kyong Hwan Jin, Dongwook Lee, and Jong Chul Ye. "A general framework for compressed sensing and parallel MRI using annihilating filter based low-rank Hankel matrix," IEEE Trans. on Computational Imaging, vol 2, no. 4, pp. 480 - 495, Dec. 2016.