Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Overview of Machine Learning Methods for Recons...

Jong Chul Ye
October 26, 2018

Overview of Machine Learning Methods for Reconstruction of Imaging Data

Keynote Talk, ​ISMRM Workshop on Machine Learning, Part II, Oct 26, 2018, Washington DC, USA

Jong Chul Ye

October 26, 2018
Tweet

More Decks by Jong Chul Ye

Other Decks in Research

Transcript

  1. Overview of Machine Learning Methods for Reconstruction of Imaging Data

    Jong Chul Ye, Ph.D Endowed Chair Professor Bio-Imaging, Signal Processing and Learning (BISPL) Group Dept. Bio & Brain Engineering Dept. Mathematical Science KAIST, Korea
  2. Unmet Needs in Medical Imaging q Medical imaging is essential

    for diagnosis of disease q Imaging systems with lower-dose of ionizing radiation ü Increasing risk of radiation dose from CT, PET, etc q Reducing contrast agents without losing diagnostic accuracy ü Severe side-effects from iodine, gadolinium contrast agents q Increasing the throughput of MR scanning ü Current MR scan time : ~ 40~50min/patient
  3. 3 The Solution q Deep learning-based recon • High Quality,

    Fast Reconstruction • Vendor-oriented Neural Network Training: a must-buy for customer • AI-driven hardware design: US systems, industrial CT • Solution Examples: • AI-powered low-dose CT reconstruction • AI-powered contrast synthesis for contrast agent reduction • AI-powered accelerated MRI • AI-powered US for low-power, ultrafast US imaging • AI-powered industrial CT
  4. 1 1

  5. Too Simple to Analyze..? Convolution & pooling à stone age

    tools of signal processing What do they do ?
  6. Missing elements can be found by low rank Hankel structured

    matrix completion Nuclear norm Projection on sampling positions min m kH(m)k⇤ subject to P⌦(b) = P⌦(f) RankH(f) = k * Jin KH et al IEEE TCI, 2016 * Jin KH et al.,IEEE TIP, 2015 * Ye JC et al., IEEE TIT, 2016 m Annihilating filter-based low-rank Hankel matrix (ALOHA)
  7. ALOHA for CS-MRI ALOHA: Annihilating filter-based low-rank Hankel matrix approach

    • Jin KH et al IEEE TCI, 2016 • Lee et al, MRM, 2015
  8. Key Observation Data-Driven Hankel matrix decomposition => Deep Learning •

    Ye et al, “Deep convolutional framelets: A general deep learning framework for inverse problems”, SIAM Journal Imaging Sciences, 11(2), 991-1048, 2018.
  9. Hd(f) = U⌃V T : Non-local basis : Local basis

    Convolution Framelets (Yin et al; 2017) > = I > = I Hd(f)
  10. Hd(f) Hd(f) = ˜ T ˜ T C C =

    T Hd(f) C = T (f ~ ) Encoder: ˜ T = I ˜ = PR(V ) Hd(f) = U⌃V T Unlifting: f = (˜C) ~ ⌧(˜ ) : Frame condition : rank condition convolution pooling un-pooling convolution : User-defined pooling : Learnable filters Hpi (gi) = X k,l [Ci]kl e Bkl i Decoder: Deep Convolutional Framelets (Y, Han, Cha; 2018)
  11. Conic fi [Ci]kl 0 Hpi (gi) = X k,l [Ci]kl

    e Bkl i Hpi (fi) ' Linear Lifting Geometry of CNN gi Linear Un-lifting Ci(fi) Ci(fi) 0 i ⇣i ⇣ e i ⌘
  12. fi [Ci]kl 0 Hpi (gi) = X k,l [Ci]kl e

    Bkl i Hpi (fi) ' Lifting Geometry of Residual CNN Ci(fi) Ci(fi) 0 i ⇣i ⇣ e i ⌘ gi Un-lifting
  13. fi Nonlinear Lifting to Feature space Comparison with Kernel PCA

    gi Nonlinear Pre-Image calculation (fi) <latexit sha1_base64="E9VdeouKNx3eJ5UDAMrvyn9icnU=">AAAB+nicbVBNS8NAFHzxs9avWI9egkWol5KIoN6KXjxWMLbQhLDZbtqlm03Y3Ygl5K948aDi1V/izX/jps1BWwcWhpn3eLMTpoxKZdvfxsrq2vrGZm2rvr2zu7dvHjQeZJIJTFycsET0QyQJo5y4iipG+qkgKA4Z6YWTm9LvPRIhacLv1TQlfoxGnEYUI6WlwGx43TFteTFS4zDKoyKgp4HZtNv2DNYycSrShArdwPzyhgnOYsIVZkjKgWOnys+RUBQzUtS9TJIU4QkakYGmHMVE+vkse2GdaGVoRYnQjytrpv7eyFEs5TQO9WQZUi56pfifN8hUdOnnlKeZIhzPD0UZs1RilUVYQyoIVmyqCcKC6qwWHiOBsNJ11XUJzuKXl4l71r5qO3fnzc511UYNjuAYWuDABXTgFrrgAoYneIZXeDMK48V4Nz7moytGtXMIf2B8/gD8DZP1</latexit> <latexit sha1_base64="E9VdeouKNx3eJ5UDAMrvyn9icnU=">AAAB+nicbVBNS8NAFHzxs9avWI9egkWol5KIoN6KXjxWMLbQhLDZbtqlm03Y3Ygl5K948aDi1V/izX/jps1BWwcWhpn3eLMTpoxKZdvfxsrq2vrGZm2rvr2zu7dvHjQeZJIJTFycsET0QyQJo5y4iipG+qkgKA4Z6YWTm9LvPRIhacLv1TQlfoxGnEYUI6WlwGx43TFteTFS4zDKoyKgp4HZtNv2DNYycSrShArdwPzyhgnOYsIVZkjKgWOnys+RUBQzUtS9TJIU4QkakYGmHMVE+vkse2GdaGVoRYnQjytrpv7eyFEs5TQO9WQZUi56pfifN8hUdOnnlKeZIhzPD0UZs1RilUVYQyoIVmyqCcKC6qwWHiOBsNJ11XUJzuKXl4l71r5qO3fnzc511UYNjuAYWuDABXTgFrrgAoYneIZXeDMK48V4Nz7moytGtXMIf2B8/gD8DZP1</latexit> <latexit sha1_base64="E9VdeouKNx3eJ5UDAMrvyn9icnU=">AAAB+nicbVBNS8NAFHzxs9avWI9egkWol5KIoN6KXjxWMLbQhLDZbtqlm03Y3Ygl5K948aDi1V/izX/jps1BWwcWhpn3eLMTpoxKZdvfxsrq2vrGZm2rvr2zu7dvHjQeZJIJTFycsET0QyQJo5y4iipG+qkgKA4Z6YWTm9LvPRIhacLv1TQlfoxGnEYUI6WlwGx43TFteTFS4zDKoyKgp4HZtNv2DNYycSrShArdwPzyhgnOYsIVZkjKgWOnys+RUBQzUtS9TJIU4QkakYGmHMVE+vkse2GdaGVoRYnQjytrpv7eyFEs5TQO9WQZUi56pfifN8hUdOnnlKeZIhzPD0UZs1RilUVYQyoIVmyqCcKC6qwWHiOBsNJ11XUJzuKXl4l71r5qO3fnzc511UYNjuAYWuDABXTgFrrgAoYneIZXeDMK48V4Nz7moytGtXMIf2B8/gD8DZP1</latexit> <latexit sha1_base64="E9VdeouKNx3eJ5UDAMrvyn9icnU=">AAAB+nicbVBNS8NAFHzxs9avWI9egkWol5KIoN6KXjxWMLbQhLDZbtqlm03Y3Ygl5K948aDi1V/izX/jps1BWwcWhpn3eLMTpoxKZdvfxsrq2vrGZm2rvr2zu7dvHjQeZJIJTFycsET0QyQJo5y4iipG+qkgKA4Z6YWTm9LvPRIhacLv1TQlfoxGnEYUI6WlwGx43TFteTFS4zDKoyKgp4HZtNv2DNYycSrShArdwPzyhgnOYsIVZkjKgWOnys+RUBQzUtS9TJIU4QkakYGmHMVE+vkse2GdaGVoRYnQjytrpv7eyFEs5TQO9WQZUi56pfifN8hUdOnnlKeZIhzPD0UZs1RilUVYQyoIVmyqCcKC6qwWHiOBsNJ11XUJzuKXl4l71r5qO3fnzc511UYNjuAYWuDABXTgFrrgAoYneIZXeDMK48V4Nz7moytGtXMIf2B8/gD8DZP1</latexit> C = 1 N N X i=1 (fi) >(fi) <latexit sha1_base64="LKnrl556MzHt0DAUIt0n5VZ7wPI=">AAACK3icbZDLSsNAFIYnXmu9RV26GSxC3ZREBHVRKHbjqlQwttCkYTKdtEMnF2YmQgl5IDe+iiAurLj1PZy0WdjWHwZ+vnMOc87vxYwKaRhTbW19Y3Nru7RT3t3bPzjUj46fRJRwTCwcsYh3PSQIoyGxJJWMdGNOUOAx0vHGzbzeeSZc0Ch8lJOYOAEahtSnGEmFXL3ZrEPb5winZpa2MlskgZvSupn1W3Z7RKt2gOTI81M/c+lFTvq2jOJF7OoVo2bMBFeNWZgKKNR29Xd7EOEkIKHEDAnRM41YOinikmJGsrKdCBIjPEZD0lM2RAERTjo7NoPnigygH3H1Qgln9O9EigIhJoGnOvMlxXIth//Veon0b5yUhnEiSYjnH/kJgzKCeXJwQDnBkk2UQZhTtSvEI6SikyrfsgrBXD551ViXtdua+XBVadwVaZTAKTgDVWCCa9AA96ANLIDBC3gDn2CqvWof2pf2PW9d04qZE7Ag7ecX5JCoQA==</latexit> <latexit sha1_base64="LKnrl556MzHt0DAUIt0n5VZ7wPI=">AAACK3icbZDLSsNAFIYnXmu9RV26GSxC3ZREBHVRKHbjqlQwttCkYTKdtEMnF2YmQgl5IDe+iiAurLj1PZy0WdjWHwZ+vnMOc87vxYwKaRhTbW19Y3Nru7RT3t3bPzjUj46fRJRwTCwcsYh3PSQIoyGxJJWMdGNOUOAx0vHGzbzeeSZc0Ch8lJOYOAEahtSnGEmFXL3ZrEPb5winZpa2MlskgZvSupn1W3Z7RKt2gOTI81M/c+lFTvq2jOJF7OoVo2bMBFeNWZgKKNR29Xd7EOEkIKHEDAnRM41YOinikmJGsrKdCBIjPEZD0lM2RAERTjo7NoPnigygH3H1Qgln9O9EigIhJoGnOvMlxXIth//Veon0b5yUhnEiSYjnH/kJgzKCeXJwQDnBkk2UQZhTtSvEI6SikyrfsgrBXD551ViXtdua+XBVadwVaZTAKTgDVWCCa9AA96ANLIDBC3gDn2CqvWof2pf2PW9d04qZE7Ag7ecX5JCoQA==</latexit> <latexit sha1_base64="LKnrl556MzHt0DAUIt0n5VZ7wPI=">AAACK3icbZDLSsNAFIYnXmu9RV26GSxC3ZREBHVRKHbjqlQwttCkYTKdtEMnF2YmQgl5IDe+iiAurLj1PZy0WdjWHwZ+vnMOc87vxYwKaRhTbW19Y3Nru7RT3t3bPzjUj46fRJRwTCwcsYh3PSQIoyGxJJWMdGNOUOAx0vHGzbzeeSZc0Ch8lJOYOAEahtSnGEmFXL3ZrEPb5winZpa2MlskgZvSupn1W3Z7RKt2gOTI81M/c+lFTvq2jOJF7OoVo2bMBFeNWZgKKNR29Xd7EOEkIKHEDAnRM41YOinikmJGsrKdCBIjPEZD0lM2RAERTjo7NoPnigygH3H1Qgln9O9EigIhJoGnOvMlxXIth//Veon0b5yUhnEiSYjnH/kJgzKCeXJwQDnBkk2UQZhTtSvEI6SikyrfsgrBXD551ViXtdua+XBVadwVaZTAKTgDVWCCa9AA96ANLIDBC3gDn2CqvWof2pf2PW9d04qZE7Ag7ecX5JCoQA==</latexit> <latexit sha1_base64="LKnrl556MzHt0DAUIt0n5VZ7wPI=">AAACK3icbZDLSsNAFIYnXmu9RV26GSxC3ZREBHVRKHbjqlQwttCkYTKdtEMnF2YmQgl5IDe+iiAurLj1PZy0WdjWHwZ+vnMOc87vxYwKaRhTbW19Y3Nru7RT3t3bPzjUj46fRJRwTCwcsYh3PSQIoyGxJJWMdGNOUOAx0vHGzbzeeSZc0Ch8lJOYOAEahtSnGEmFXL3ZrEPb5winZpa2MlskgZvSupn1W3Z7RKt2gOTI81M/c+lFTvq2jOJF7OoVo2bMBFeNWZgKKNR29Xd7EOEkIKHEDAnRM41YOinikmJGsrKdCBIjPEZD0lM2RAERTjo7NoPnigygH3H1Qgln9O9EigIhJoGnOvMlxXIth//Veon0b5yUhnEiSYjnH/kJgzKCeXJwQDnBkk2UQZhTtSvEI6SikyrfsgrBXD551ViXtdua+XBVadwVaZTAKTgDVWCCa9AA96ANLIDBC3gDn2CqvWof2pf2PW9d04qZE7Ag7ecX5JCoQA==</latexit> PCA of • Nonlinear lifting & unlifting • Deterministic kernel • Difficulty in multilevel extension
  14. Insights obtained from the analysis q Pooling layer à network

    architecture ü Frame condition qWhere to design neural network ? ü Where Hankel structured matrix is low-ranked q Other insights ü Concatenation layers ü Residual or direction mapping ?
  15. Research Goal Ø To improve temporal resolution of TWIST imaging

    using deep k-space learning Ø To generate multiple reconstruction results with various spatial and temporal resolution using one network VS = 5 VS = 2 CNN K-space Deep Learning for Time-resolved MRI
  16. Low-Dose CT • To reduce the radiation exposure, sparse-view CT,

    low-dose CT and interior tomography. Sparse-view CT (Down-sampled View) Low-dose CT (Reduced X-ray dose) Interior Tomography (Truncated FOV)
  17. Un-Supervised Learning for low-dose CT 43 • Multiphase Cardiac CT

    denoising – Phase 1, 2: low-dose, Phase 3 ~ 10: normal dose – Goal: dynamic changes of heart structure – No reference available Kang et al, Medical Physics (in press), 2018
  18. 44 (a) (b) (c) (d) (e) (f) (g) (h) (b)

    (c) (d) (f) (g) (h) GAN
  19. 45 • Cardiac CT denoising – Cycle Consistent Adversarial Denoising

    Network for Multiphase Coronary CT Angiography Un-supervised Learning using Cyclic-GAN
  20. 46 (a) (b) (c) (d) (e) (f) (g) (h) (b)

    (c) (d) (f) (g) (h) GAN
  21. 1st view 2nd view 3rd view 4th view 5th view

    6th view 7th view 8th view 9th view q AI-powered 9-View CT for Security Scanning Semi-supervised Learning Han et al, arXiv preprint arXiv:1712.10248, (2017). CT meeting 2018
  22. Semi-Supervised High Resolution View Synthesis 128 256 64 128 6

    4 256 256 512 512 512 1024 512 1024 512 256 512 256128 • Key idea • Training with measured views • Generate stacks of x-y images • Neural network training with theta-z images
  23. Outlooks q End-to-End AI for radiological imaging Ø From AI-powered

    image acquisition to diagnosis for clear and rapid radiological imaging Existing AI Solutions: Diagnosis Our solution: from acquisition to diagnosis