Solve All ROIs: Deep Learning CT for Any ROI using Differentiated Backprojection. arXiv preprint arXiv:1810.00500. 79.Rivenson, Y., Göröcs, Z., Günaydin, H., Zhang, Y., Wang, H., & Ozcan, A. (2017). Deep learning microscopy. Optica, 4(11), 1437-1443. 80.Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., & Ozcan, A. (2018). Phase recovery and holographic image reconstruction using deep learning in neural networks. Light: Science & Applications, 7(2), 17141. 81.Li, S., Deng, M., Lee, J., Sinha, A., & Barbastathis, G. (2018). Imaging through glass diffusers using densely connected convolutional networks. Optica, 5(7), 803-813. 82.Nehme, E., Weiss, L. E., Michaeli, T., & Shechtman, Y. (2018). Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, 5(4), 458- 464. 83.Lim, J., Lee, K., Jin, K. H., Shin, S., Lee, S., Park, Y., & Ye, J. C. (2015). Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography. Optics express, 23(13), 16933-16948. 84.Choi, G., Ryu, D., Jo, Y., Kim, Y. S., Park, W., Min, H. S., & Park, Y. (2019). Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction tomography. Optics express, 27(4), 4927-4943. 85.Yoon, Y. H., & Ye, J. C. (2018, April). Deep learning for accelerated ultrasound imaging. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6673-6676). IEEE.