Probabilistic PCA ⇒ A specific factor analysis model (Roweis, 1998, Tipping & Bishop, 1999) xij = (Zn×kB p×k )ij + εij , zi ∼ N(0, Ik), εi ∼ N(0, σ2 Ip) • Conditional independence : xi |zi ∼ N(Bzi , σ2 Ip) • Distribution i.i.d: xi ∼ N(0, Σ = BB + σ2 Ip) • Max Lik.: ˆ σ2 = 1 p−k p l=k+1 λl ˆ B = V (D − σ2 Ik)1 2 ⇒ BLUP E(zi |xi ): ˆ Z = X ˆ B(ˆ B ˆ B + σ2 Ik)−1 ˆ µppca = ˆ Z ˆ B ˆ µ ppca ij = k l=1 dl − σ2 dl uil vjl ⇒ Bayesian SVD with a priori on U: Regularized PCA 57 / 57