Upgrade to Pro — share decks privately, control downloads, hide ads and more …

2022秋講演①株式会社ビデオリサーチ 田村 玄 様 調査会社におけるデータ解析いまむかし

JPSPSS
November 04, 2022

2022秋講演①株式会社ビデオリサーチ 田村 玄 様 調査会社におけるデータ解析いまむかし

2022/11/4に開催されたSPSS 秋のオンラインユーザーイベントのご講演
株式会社ビデオリサーチ 田村 玄 様
「講演①調査会社におけるデータ解析いまむかし」
のスライド資料(公開版)です。

JPSPSS

November 04, 2022
Tweet

More Decks by JPSPSS

Other Decks in Technology

Transcript

  1. 2 私とSPSS 学生時代 • SPSS Statisticsを少し触る程度 ビデオリサーチ入社後 • SPSS Statisticsで多変量解析中心に

    • SPSS Modeler導入にあたり、SPSS Statisticsでシンタックスを使い始める • データ解析業務にStatistics、Modelerを活用 • 若手へのデータ解析教育 etc. 自己紹介
  2. 4 メジャメント事業 • 視聴率調査 • 調査協力世帯に、測定機械を設置 • 24時間365日、1分単位で測定 • 大規模生活者調査

    • テレビを始めとするメディア接触/商品・サービスの利用状況/デモグラフィック情報 • 年に一回、調査協力者にアンケートの回答を依頼 • カスタマイズドの調査/データ解析 • 顧客のリクエストに応じた調査やデータ解析 本日は、 ココのいまむかしを ビデオリサーチの事業紹介(2/2)
  3. 5 • 調査結果の可視化 • 集約(=変数の合成) データ解析いまむかし ~ むかしから続いているもの(1/4) 例)買い物意識調査 サンプル

    自分の考え で買う 新製品に無 関心 メーカー品 を買う 外国ブラン ドが好き ブランド志 向因子 自分志向因 子 1 2 2 2 2 -0.707 -1.390 2 2 2 2 3 -0.600 -1.408 ・・・ ・・・ ・・・ ・・・ ・・・ ・・・ ・・・ 3,600 5 3 1 1 -1.447 1.244 ローデータ 当社事例:CI時代の企業イメージを探る https://www.videor.co.jp/digestplus/media/2017/04/1897.html
  4. 6 • 調査結果の可視化 • 集約(=変数の合成) • 分類(=レコードの分類) 例)買い物意識調査 サンプル 自分の考え

    で買う 新製品に無 関心 メーカー品 を買う 外国ブラン ドが好き ブランド志 向因子 自分志向因 子 1 2 2 2 2 -0.707 -1.390 2 2 2 2 3 -0.600 -1.408 ・・・ ・・・ ・・・ ・・・ ・・・ ・・・ ・・・ 3,600 5 3 1 1 -1.447 1.244 ローデータ 当社事例:クラスター分析によるライフスタイルからみた夫婦の類型化ー新聞六社報告書より(下)ー https://www.videor.co.jp/digestplus/media/2017/05/9432.html データ解析いまむかし ~ むかしから続いているもの(2/4)
  5. 7 • 調査結果の可視化 • 集約(=変数の合成) • 分類(=レコードの分類) • 調査データを用いての予測 •

    広告出稿 => 反応 当社事例:テレビコマーシャルカルテ(TV-CM KARTE)報告書内容紹介 https://www.videor.co.jp/digestplus/ad/2017/05/7692.html データ解析いまむかし ~ むかしから続いているもの(3/4)
  6. 8 • 調査結果の可視化 • 集約(=変数の合成) • 分類(=レコードの分類) • 調査データを用いての予測 •

    広告出稿 => 反応 • 調査データからの仮説発見 • データマイニング ・調査データを分析にかけてみるものの、 「ビールと紙おむつ」のような、これだ!という発見はなかった データ解析いまむかし ~ むかしから続いているもの(4/4)
  7. 9 外部環境の変化 • 企業が、調査会社に委託しなくても、自社でデータを入手できるようになってきた • 顧客リスト • テレビ視聴ログ • PC、スマホの閲覧ログや購買ログ

    • etc. • 自社で入手できるデータ(=1stPartyデータ)を解析すればよい? • 調査データは不要? • 1stPartyデータ≒「集まるデータ」 • 調査データ=「集めるデータ」 データ解析いまむかし ~ いま(1/8)
  8. 12 外部環境の変化への対応 ~具体例~ • データフュージョン • 類似度マッチング 1stPartyデータ 調査データ …

    共通で取得している項目の類似度が高いレコードを探索し、 同一レコードとみなす 当社事例:多様化する視聴者を捉える「ADVANCED TARGET」分析事例~視聴率にプロフィールデータを紐づける https://www.videor.co.jp/digestplus/tv/2019/07/34582.html データ解析いまむかし ~ いま(4/8)
  9. 13 外部環境の変化への対応 ~具体例~ • データフュージョン • 類似度マッチング • 機械学習による推定 1stPartyデータ

    調査データ 調査データにおいて、 共通で取得している項目を説明変数とした予測モデルを作成し、 1stPartyデータに適用する モデリング 当社事例:自社ユーザーのプロフィールが分からない... 「VR FACE」による調査データを用いたプロフィールエンリッチメント https://www.videor.co.jp/digestplus/market/2020/11/40237.html データ解析いまむかし ~ いま(5/8)
  10. 14 外部環境の変化への対応 ~具体例~ • データフュージョン • 類似度マッチング • 機械学習による推定 •

    TV視聴ログ個人分離 • 家族構成推定 • 個人視聴推定 TV視聴ログ 視聴率データ モデリング 当社事例:「データ連携により実現する世界」 テレビ視聴ログを使ったデータ拡充の最前線 https://www.videor.co.jp/digestplus/tv/2021/11/46232.html TV受像機単位のデータ => ヒト単位のデータ データ解析いまむかし ~ いま(6/8)
  11. 15 外部環境の変化への対応 ~具体例~ • データフュージョン • 類似度マッチング • 機械学習による推定 •

    TV視聴ログ個人分離 • 家族構成推定 • 個人視聴推定 • 予測 • MMM (マーケティングミックスモデル) 1stPartyデータ 調査データ 目的変数:売上や顧客数 説明変数:広告出稿量など 予測 当社事例:メディアデータと顧客データをつなぎ、精度の高いモデルを作ることで一歩先の提言が可能に https://www.videor.co.jp/digestplus/ad/2019/12/35432.html データ解析いまむかし ~ いま(7/8)
  12. 16 外部環境の変化への対応 ~具体例~ • データフュージョン • 類似度マッチング • 機械学習による推定 •

    TV視聴ログ個人分離 • 家族構成推定 • 個人視聴推定 • 予測 • MMM • 時系列データによる将来予測 データ解析いまむかし ~ いま(8/8)
  13. 18 変わらない点 • データ解析手法の背景にある考え方 • 次元圧縮、分類、予測 • 「ビジネス課題にデータ解析技術を適用し、課題を解決する」という観点 • 調査データ単体

    → 1stPartyデータ+調査データ と変化してはいるが… • 課題をデータ解析技術に置き換えて解く喜び • 自身の成長につながる むかしといま(2/2)