Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
講演④故障を予測する 株式会社 JAL エンジニアリング 竹村 玄 様_SPSSユーザーイベン...
Search
JPSPSS
May 27, 2022
Technology
0
750
講演④故障を予測する 株式会社 JAL エンジニアリング 竹村 玄 様_SPSSユーザーイベント2022春
2022/05/20に開催されたSPSS オンラインユーザーイベントのご講演
株式会社 JAL エンジニアリング 竹村 玄 様
「講演④故障を予測する」
のスライド資料(公開版)です
JPSPSS
May 27, 2022
Tweet
Share
More Decks by JPSPSS
See All by JPSPSS
20251203SPSS秋01_千代田化工建設_増田様
jpspss
0
27
20251203SPSS秋04_ファミリーマート_橋本様
jpspss
0
100
20251203DataScience_リクルート_西村様資料
jpspss
1
90
20251203SPSS秋03_朝日新聞_木村様
jpspss
1
81
20251203SPSS秋02_JFE条鋼_津田様公開資料
jpspss
0
72
20250604SPSS春03_トヨタプロダクションエンジニアリング_稲垣様資料
jpspss
0
160
20250604SPSS春01_JALカード_伊藤様資料
jpspss
0
180
20250604SPSS春04_2_三井化学_新村様資料
jpspss
0
140
20250604SPSS春02_ベネッセ_中島様資料
jpspss
0
97
Other Decks in Technology
See All in Technology
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
530
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
450
AI駆動開発を事業のコアに置く
tasukuonizawa
1
400
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
430
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
610
22nd ACRi Webinar - NTT Kawahara-san's slide
nao_sumikawa
0
120
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
1
170
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.2k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
270
AWS Network Firewall Proxyを触ってみた
nagisa53
1
250
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
210
Featured
See All Featured
Designing for humans not robots
tammielis
254
26k
Exploring anti-patterns in Rails
aemeredith
2
260
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
950
Java REST API Framework Comparison - PWX 2021
mraible
34
9.2k
Into the Great Unknown - MozCon
thekraken
40
2.3k
Testing 201, or: Great Expectations
jmmastey
46
8.1k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Test your architecture with Archunit
thirion
1
2.2k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Believing is Seeing
oripsolob
1
59
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
Transcript
故障を予測する ~ 航空機整備における故障予測 ~ 株式会社 JALエンジニアリング 技術部 ⽵村 ⽞
©Japan Airlines, ALL rights reserved. JALエンジニアリング 紹介 < 管理機材 >
Boeing 787 Boeing 777 Boeing 767 Boeing 737 Embraer 170/190 Airbus A350
Table of Contents 2 定時運航に向けた取り組み 故障予測ポイント① 故障状態を定義する 故障予測ポイント② 仮説をデータで検証する 故障予測ポイント③
モデルを評価する
©Japan Airlines, ALL rights reserved. ⾶⾏中に故障が発⽣した場合・・・ 3 計画外の 整備作業 故障発⽣
システムの冗⻑性低下 トラブルシューティング 交換部品の⼿配 整備⼠の⼿配 ・・・・ 修理作業時間 修理作業時間 遅延 もしくは ⽋航
©Japan Airlines, ALL rights reserved. 故障を未然に防ぐ 〜予防整備〜 整備プログラム モニタリング ・
整備⼠の五感 ・ データ分析 改修等による ハザード除去 ⽋航・遅延 予 防 整 備 客室空調 システム 潜在的ハザード (故障の種⼦) 整備プログラムの 網をすり抜けた︕ ここで⾷い ⽌めたい︕ X X X X 4 X X X (検査・作動試験・交換等) X X 故障 故障 ⾃動操縦 システム 油圧供給 システム 燃料制御 システム ・・・・・
©Japan Airlines, ALL rights reserved. 運航時に取得される センサーデータ (温度、圧⼒、 回転数、etc…) ・航空機の故障履歴
・整備の実施履歴 JALエンジニアリング 整備情報 データベース データベース (JAL保有センサーデータ) 故障予測分析 故障予測分析 故障予測分析 JALエンジニアリング 技術者 IBM SPSS Modeler IBM技術者 故障予測の結果に基づき 予防整備を実施 機材故障による⽋航や 遅延を未然に防⽌ ビッグデータ分析による故障予測 5
©Japan Airlines, ALL rights reserved. Needle in a haystack ??
6
©Japan Airlines, ALL rights reserved. 不具合発⽣ =NG 不具合の予兆を抱えて いる可能性が⾼い =異常な状態
不具合がない =正常な状態 分析の前提 7 部品・システムの健全性 時間 時間経過と共に部品・システムの健全性が低下していく前提で考える 故障のイメージ図
©Japan Airlines, ALL rights reserved. 分析の前提 8 エラーメッセージ発⽣ 不具合 発⽣便
1便前 2便前 3便前 4便前 100便前 200便前 5便前 データ取得 データ取得 データ取得 データ取得 データ取得 ここで予測できたとしても 次のフライト前に予防整備を実施きない 2便前までに検知できる兆候でないと 予防整備実施できる機会がない 健全な状態 不具合を抱えている状態 (どういう状態が”不具合を抱えている”とするか事前の定義が必要) ①どういう状態を予測するか︖ ②どれくらい前に検知する必要があるのか︖
©Japan Airlines, ALL rights reserved. 故障予測分析について 9 フライト データ 不具合発⽣
時系列 ・ ・ ・ ・ ・ ・ ・ ・ ・ フライト データ 異常 フライト データ 異常 フライト データ 異常 故障予測分析とは・・・ 正常なフライトデータと異常なフライトデータを 分けることができるパラメータの特徴(=不 具合の兆候を捉える特徴量)を⾒つけ出す こと。 ※特徴量の例︓ 特定の条件下におけるエンジン オイル温度の平均値等 不具合の兆候を捉える特徴量を使って、モ ニタリングを実施する。 分析 フライト データ 異常 フライト データ 異常 フライト データ 異常 フライト データ 異常
©Japan Airlines, ALL rights reserved. 既存分析(仮説検証型分析)⼿法の流れ 1 知見 着⽬するパラメータを検討
どのような兆候が現れるか仮説⽴案 STEP① 不具合の兆候を捉える特徴量を作成する STEP③ パラメータを可視化 不具合の兆候がないか観察 STEP② 数年分のフライトデータで統計的に検証 閾値を決定 モニタリング開始 STEP④ 故障予測 モデル
©Japan Airlines, ALL rights reserved. 故障予測モデルを評価する 混同⾏列 : ⼀般的に予測モデルの性能を測るための指標
Precision(適合率)= ②/③ ・・・⾼ければ確実に故障の芽を取り除くことができる Recall (再現率)= ②/① ・・・⾼ければより多くの故障の予兆を捉えることができる 全てのフライト 予測が的中したフライト (正常) ④ 故障すると予測したフライト 1 故障が発⽣したフライト 予測が的中したフライト (故障) 2 3 正常データが圧倒的に多い ↓ True Negativeの度数が多くなる ↓ Accuracyは⾃ずと⾼くなるため 評価指標として不適 トレードオフ