Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Real-Time_Bidding_Algorithms_for_performance-Ba...
Search
jujudubai
August 17, 2014
Research
0
760
Real-Time_Bidding_Algorithms_for_performance-Based_Display_Ad_Allocation.pdf
いろいろと参考にしながら、要約を。
この論文はとても参考になります。
jujudubai
August 17, 2014
Tweet
Share
More Decks by jujudubai
See All by jujudubai
juju1008
juju1008
1
4.2k
Realtime Bid Optimization with Smooth Budget Delivery in Online Advertising
juju1008
2
930
Estimating Conversion Rate in Display Advertising from Past Performance Data
juju1008
1
920
Other Decks in Research
See All in Research
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
780
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
460
2025年度 生成AIの使い方/接し方
hkefka385
1
750
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
580
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
320
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
18k
業界横断 副業・兼業者の実態調査
fkske
0
210
Principled AI ~深層学習時代における課題解決の方法論~
taniai
3
1.2k
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
120
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
130
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
1
280
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
7
3.8k
Featured
See All Featured
How to Ace a Technical Interview
jacobian
278
23k
A Tale of Four Properties
chriscoyier
160
23k
Faster Mobile Websites
deanohume
308
31k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
The Language of Interfaces
destraynor
158
25k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Raft: Consensus for Rubyists
vanstee
140
7.1k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Transcript
Review: “Real-Time Bidding Algorithms for performance-Based Display Ad Allocation” Tatsuki
Sugio
ຊจͷ֓ཁ A. demand-side, supply-side • ༧ࢉࢿͷ࠷దԽɺऩӹʢrevenueʣͷ࠷େԽ • RTB Exchangeʹ͓͍ͯɺimpຖʹΩϟϯϖʔϯΛׂΓͯΔ ➡
ϦΞϧλΠϜͰͷ࠷దԽʹΑΓ࣮ݱ ➡ errorͷେ͖͞ʹԠͯ͡ύϥϝʔλΛௐ B. ՝ • มɺ੍͕ଟ͍ ➡ ઢܗܭըͷରͷղʹΑΓ࣮ݱ • ΦϑϥΠϯ࠷దԽͰཻ͕ૈ͍ ࢢͷมԽʹରͯ͠దԠతͳbid͕Ͱ͖ͳ͍ ➡ ϦΞϧλΠϜͰͷ࠷దԽʹΑΔࡉཻ͔͍Ͱͷ࠷దԽΛ࣮ݱ C. ํ๏ • online bidding algorithm frameworkΛఏҊ • Ωϟϯϖʔϯຖͷbidػೳύϥϝʔλͷߋ৽ํ๏ʢWaterlevel or Model-based ʣͱͯ͠ɺطଘͷϦιʔε ͷۙࣅΞϧΰϦζϜʹinspire͞Εͨํ๏ͱɺbidͷউͷΛϞσϧԽͯࣜ͠ʹΈࠐΜͩͷΛఏҊɻ
Formulation A. ऩӹͷఆٛ B. ೖࡳֹͷܾఆɺௐ ࠂओผ
ೖࡳֹௐͷ߲ ͜Ε͔Β͜ͷzЋzΛٻΊͯɺ࠷దͳzCJEQSJDFzΛਪఆ͠·͢
LR Formulation • ࠷దԽ ΩϟϯϖʔϯKͷJ൪ͷJNQνϟϯεʹJNQͰ͖͔ͨ൱͔ʢೋʣ WJKQJK RJKˡ $53 $1$ ΩϟϯϖʔϯKͷඪJNQʢ༧ࢉ੍Λ݉ͶΔʣ
εϥοΫ݅
• ࠷దԽͷର
➡ α,βΛٻΊΔ͜ͱ͕త ܭࢉճɺO(mn)Ͱͳ͘ɺO(m+n) ➡ શϢχϞδϡϥߦྻʢtotally unimodular matrix, TU ߦྻʣʹجͮ͘ ࢀߟʣhttp://ja.wikipedia.org/ ๚ऀͷ૿ՃͷܦࡁతʢJNQͷ࠷খՁ֨ͱʣ ༧ࢉͷ૿Ճͷܦࡁతʢ࠷খརӹͱʣ
Real-Time Bidding Algorithm • ٙࣅίʔυ HPBMBDIJFWFE Ќͷܭࢉ POMJOF"MHPSJUINͷద༻
Control-theoretic Bid Adjustment • waterlevel-base update (online algorithm) - ίετߟྀ͠ͳ͍
- PIɺPIDཧ JNQ FSSPS FSSPSʹͲΕ͚ͩૣ͘Ԡ͢Δ͔ͷ
1*%੍ޚཧ 1*%੍ޚͷجຊࣜɺภࠩFʹൺྫ͢Δग़ྗΛग़͢ൺྫಈ࡞ʢ1PQPSUJOBMBDUJPO1ಈ࡞ʣͱɺ ภࠩFͷੵʹൺྫ͢Δग़ྗΛग़͢ੵಈ࡞ʢ*OUFHSBMBDUJPO*ಈ࡞ʣͱɺ ภࠩFͷඍʹൺྫ͢Δग़ྗΛग़͢ඍಈ࡞ʢ%FSJWBUJWFBDUJPO%ಈ࡞ʣ͔ΒͳΔɻ ௨ৗɺ1ಈ࡞Λओମʹͯ͠ɺิॿతʹ*ಈ࡞ͱ%ಈ࡞Λ੍ޚରʹԠͯ͡దʹΈ߹ΘͤΔɻ ૢ࡞ྔ.7ɺͦΕͧΕͷͱͯ͠ɺ࣍ࣜͷ༷ʹද͞ΕΔɻ IUUQXXXOJDPNXIJUFQBQFSKB
Model-based Bid Adjustment • γεςϜ੍ޚཧʹجͮ͘Ξϓϩʔν(PI:online algorithm) - ίετɺೖࡳֹߟྀ FSSPSʹૣ͘ͲΕ͚ͩૣ͘Ԡ͢Δ͔ͷ ཧతͳೖࡳՁ֨
ཧతͳউʢHJʹ߹ΘͤΔͨΊʹඞཁͳউʣ ؍ଌ͞Εͨউ ೖࡳίετ .-&ͷύϥϝʔλɻ XJOͨ͠ೖࡳ X ͷ౷ܭྔ͔Βಋ͔ΕΔɻ
a Practical formulation • ίετ߲ͷಋೖʹΑΓߋʹҰൠԽͨ͠ओ
• ίετ߲ͷಋೖʹΑΓߋʹҰൠԽͨ͠ର JNQ(SPVQ QMBDFNFOU Jͷ֫ಘͰ͖ͦ͏ͳJNQ
Experiments • ࣮ݧ݁Ռͷ֓ཁ - αͷௐʹΑͬͯೖࡳͷ࠷దԽ͕ߦ͑Δ͔Ͳ͏͔ - ҟͳΔ࠷దԽख๏ͷಋೖʹΑΓͲͷఔύϑΥʔϚϯε͕ҟͳΔͷ͔ - αͷॳظ͕ͲͷఔӨڹ͢Δͷ͔ •
࣮ݧ݅ - ༻σʔλσΟεϓϨΠωοτϫʔΫͷσʔλ - ฏۉ120Mͷimp͕͋ΔαΠτͰ࣮ݧ - 4ͭͷCPCΩϟϯϖʔϯ͕ର • σʔλ • timestamp,placement,user,campaign,clicks,impressions • ॱʹt,i=(placement:user),j,cij(t),xij(t)
MJGU ʹ ࢪࡦΛ࣮ࢪ͠ͳ͍࣌ͷ݁Ռ ࢪࡦΛ࣮ࢪͨ࣌͠ͷ݁Ռ IUUQXXXBMCFSUDPKQUFDIOPMPHZDSNMJGUIUNM
- Experiments 1 • ؍ଌͱγϡϛϨʔγϣϯʹΑΔͷlift ➡ offlineͷΈΑΓonlineͰαΛௐͨ͠ํ͕͕ྑ͍
➡ model-based bid ͱ Waterlevel bidͷൺֱ - offlineͰͷαͷࢉग़1ͷσʔλ - αࢉग़ޙͷ4ؒͷσʔλΛൺֱ ➡ online algorithmoffline algorithmʹରͯ͠90ˋҎ্ͷ ➡ ҆ఆੑModel Bidder͕ྑ͍
- Experiments 2 • hourlyͷมಈʢ࣌ؒͷ҆ఆੑ֬ೝʣ ➡ Waterlevel Bidder࣌ؒతͳ҆ఆੑ͕ߴ͍ ➡ Model
Bidderෆ҆ఆ
- Experiment 3 • online algorithm(Waterlevel Bidder)ʹ͓͚ΔαͷॳظͷӨڹ ➡ ॳظͷมಈ΄ͱΜͲͳ͍ ͔͠͠ɺΩϟϯϖʔϯ༧ࢉͷ੍͕ݫ͚͠ΕӨڹ͕͋Δ͔…
• ༧ࢉ੍ʢݫʣ ➡ ༧ࢉ੍͕ݫ͚͠Εɺ ॳظͷมಈ͋Δɻ offline࠷దԽͨ͠αͷ͕ྑ͍ɻ - Experiments 4
Conclusion • ݁ - γϯϓϧ͕ͩཧతഎܠͷ͋Δonline algorithmΛఏҊ - PIDཧͷԠ༻Մೳੑ - ଞͷछྨͷϞσϧߟྀ͢Εɺߋʹվྑ͕ग़དྷΔͷͰͳ͍͔