Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Real-Time_Bidding_Algorithms_for_performance-Ba...
Search
jujudubai
August 17, 2014
Research
0
750
Real-Time_Bidding_Algorithms_for_performance-Based_Display_Ad_Allocation.pdf
いろいろと参考にしながら、要約を。
この論文はとても参考になります。
jujudubai
August 17, 2014
Tweet
Share
More Decks by jujudubai
See All by jujudubai
juju1008
juju1008
1
4.2k
Realtime Bid Optimization with Smooth Budget Delivery in Online Advertising
juju1008
2
920
Estimating Conversion Rate in Display Advertising from Past Performance Data
juju1008
1
910
Other Decks in Research
See All in Research
20250502_ABEJA_論文読み会_スライド
flatton
0
170
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
110
Scale-Aware Recognition in Satellite images Under Resource Constraints
satai
3
330
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
540
MGDSS:慣性式モーションキャプチャを用いたジェスチャによるドローンの操作 / ec75-yamauchi
yumulab
0
230
NLP2025SharedTask翻訳部門
moriokataku
0
290
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
200
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
170
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
12
8k
2025年度 生成AIの使い方/接し方
hkefka385
1
690
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.7k
最適化と機械学習による問題解決
mickey_kubo
0
140
Featured
See All Featured
Embracing the Ebb and Flow
colly
86
4.7k
The Language of Interfaces
destraynor
158
25k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
124
52k
Docker and Python
trallard
44
3.4k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
4
200
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Site-Speed That Sticks
csswizardry
10
650
Adopting Sorbet at Scale
ufuk
77
9.4k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Transcript
Review: “Real-Time Bidding Algorithms for performance-Based Display Ad Allocation” Tatsuki
Sugio
ຊจͷ֓ཁ A. demand-side, supply-side • ༧ࢉࢿͷ࠷దԽɺऩӹʢrevenueʣͷ࠷େԽ • RTB Exchangeʹ͓͍ͯɺimpຖʹΩϟϯϖʔϯΛׂΓͯΔ ➡
ϦΞϧλΠϜͰͷ࠷దԽʹΑΓ࣮ݱ ➡ errorͷେ͖͞ʹԠͯ͡ύϥϝʔλΛௐ B. ՝ • มɺ੍͕ଟ͍ ➡ ઢܗܭըͷରͷղʹΑΓ࣮ݱ • ΦϑϥΠϯ࠷దԽͰཻ͕ૈ͍ ࢢͷมԽʹରͯ͠దԠతͳbid͕Ͱ͖ͳ͍ ➡ ϦΞϧλΠϜͰͷ࠷దԽʹΑΔࡉཻ͔͍Ͱͷ࠷దԽΛ࣮ݱ C. ํ๏ • online bidding algorithm frameworkΛఏҊ • Ωϟϯϖʔϯຖͷbidػೳύϥϝʔλͷߋ৽ํ๏ʢWaterlevel or Model-based ʣͱͯ͠ɺطଘͷϦιʔε ͷۙࣅΞϧΰϦζϜʹinspire͞Εͨํ๏ͱɺbidͷউͷΛϞσϧԽͯࣜ͠ʹΈࠐΜͩͷΛఏҊɻ
Formulation A. ऩӹͷఆٛ B. ೖࡳֹͷܾఆɺௐ ࠂओผ
ೖࡳֹௐͷ߲ ͜Ε͔Β͜ͷzЋzΛٻΊͯɺ࠷దͳzCJEQSJDFzΛਪఆ͠·͢
LR Formulation • ࠷దԽ ΩϟϯϖʔϯKͷJ൪ͷJNQνϟϯεʹJNQͰ͖͔ͨ൱͔ʢೋʣ WJKQJK RJKˡ $53 $1$ ΩϟϯϖʔϯKͷඪJNQʢ༧ࢉ੍Λ݉ͶΔʣ
εϥοΫ݅
• ࠷దԽͷର
➡ α,βΛٻΊΔ͜ͱ͕త ܭࢉճɺO(mn)Ͱͳ͘ɺO(m+n) ➡ શϢχϞδϡϥߦྻʢtotally unimodular matrix, TU ߦྻʣʹجͮ͘ ࢀߟʣhttp://ja.wikipedia.org/ ๚ऀͷ૿ՃͷܦࡁతʢJNQͷ࠷খՁ֨ͱʣ ༧ࢉͷ૿Ճͷܦࡁతʢ࠷খརӹͱʣ
Real-Time Bidding Algorithm • ٙࣅίʔυ HPBMBDIJFWFE Ќͷܭࢉ POMJOF"MHPSJUINͷద༻
Control-theoretic Bid Adjustment • waterlevel-base update (online algorithm) - ίετߟྀ͠ͳ͍
- PIɺPIDཧ JNQ FSSPS FSSPSʹͲΕ͚ͩૣ͘Ԡ͢Δ͔ͷ
1*%੍ޚཧ 1*%੍ޚͷجຊࣜɺภࠩFʹൺྫ͢Δग़ྗΛग़͢ൺྫಈ࡞ʢ1PQPSUJOBMBDUJPO1ಈ࡞ʣͱɺ ภࠩFͷੵʹൺྫ͢Δग़ྗΛग़͢ੵಈ࡞ʢ*OUFHSBMBDUJPO*ಈ࡞ʣͱɺ ภࠩFͷඍʹൺྫ͢Δग़ྗΛग़͢ඍಈ࡞ʢ%FSJWBUJWFBDUJPO%ಈ࡞ʣ͔ΒͳΔɻ ௨ৗɺ1ಈ࡞Λओମʹͯ͠ɺิॿతʹ*ಈ࡞ͱ%ಈ࡞Λ੍ޚରʹԠͯ͡దʹΈ߹ΘͤΔɻ ૢ࡞ྔ.7ɺͦΕͧΕͷͱͯ͠ɺ࣍ࣜͷ༷ʹද͞ΕΔɻ IUUQXXXOJDPNXIJUFQBQFSKB
Model-based Bid Adjustment • γεςϜ੍ޚཧʹجͮ͘Ξϓϩʔν(PI:online algorithm) - ίετɺೖࡳֹߟྀ FSSPSʹૣ͘ͲΕ͚ͩૣ͘Ԡ͢Δ͔ͷ ཧతͳೖࡳՁ֨
ཧతͳউʢHJʹ߹ΘͤΔͨΊʹඞཁͳউʣ ؍ଌ͞Εͨউ ೖࡳίετ .-&ͷύϥϝʔλɻ XJOͨ͠ೖࡳ X ͷ౷ܭྔ͔Βಋ͔ΕΔɻ
a Practical formulation • ίετ߲ͷಋೖʹΑΓߋʹҰൠԽͨ͠ओ
• ίετ߲ͷಋೖʹΑΓߋʹҰൠԽͨ͠ର JNQ(SPVQ QMBDFNFOU Jͷ֫ಘͰ͖ͦ͏ͳJNQ
Experiments • ࣮ݧ݁Ռͷ֓ཁ - αͷௐʹΑͬͯೖࡳͷ࠷దԽ͕ߦ͑Δ͔Ͳ͏͔ - ҟͳΔ࠷దԽख๏ͷಋೖʹΑΓͲͷఔύϑΥʔϚϯε͕ҟͳΔͷ͔ - αͷॳظ͕ͲͷఔӨڹ͢Δͷ͔ •
࣮ݧ݅ - ༻σʔλσΟεϓϨΠωοτϫʔΫͷσʔλ - ฏۉ120Mͷimp͕͋ΔαΠτͰ࣮ݧ - 4ͭͷCPCΩϟϯϖʔϯ͕ର • σʔλ • timestamp,placement,user,campaign,clicks,impressions • ॱʹt,i=(placement:user),j,cij(t),xij(t)
MJGU ʹ ࢪࡦΛ࣮ࢪ͠ͳ͍࣌ͷ݁Ռ ࢪࡦΛ࣮ࢪͨ࣌͠ͷ݁Ռ IUUQXXXBMCFSUDPKQUFDIOPMPHZDSNMJGUIUNM
- Experiments 1 • ؍ଌͱγϡϛϨʔγϣϯʹΑΔͷlift ➡ offlineͷΈΑΓonlineͰαΛௐͨ͠ํ͕͕ྑ͍
➡ model-based bid ͱ Waterlevel bidͷൺֱ - offlineͰͷαͷࢉग़1ͷσʔλ - αࢉग़ޙͷ4ؒͷσʔλΛൺֱ ➡ online algorithmoffline algorithmʹରͯ͠90ˋҎ্ͷ ➡ ҆ఆੑModel Bidder͕ྑ͍
- Experiments 2 • hourlyͷมಈʢ࣌ؒͷ҆ఆੑ֬ೝʣ ➡ Waterlevel Bidder࣌ؒతͳ҆ఆੑ͕ߴ͍ ➡ Model
Bidderෆ҆ఆ
- Experiment 3 • online algorithm(Waterlevel Bidder)ʹ͓͚ΔαͷॳظͷӨڹ ➡ ॳظͷมಈ΄ͱΜͲͳ͍ ͔͠͠ɺΩϟϯϖʔϯ༧ࢉͷ੍͕ݫ͚͠ΕӨڹ͕͋Δ͔…
• ༧ࢉ੍ʢݫʣ ➡ ༧ࢉ੍͕ݫ͚͠Εɺ ॳظͷมಈ͋Δɻ offline࠷దԽͨ͠αͷ͕ྑ͍ɻ - Experiments 4
Conclusion • ݁ - γϯϓϧ͕ͩཧతഎܠͷ͋Δonline algorithmΛఏҊ - PIDཧͷԠ༻Մೳੑ - ଞͷछྨͷϞσϧߟྀ͢Εɺߋʹվྑ͕ग़དྷΔͷͰͳ͍͔