Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ロジスティック回帰 Part 1 - 基礎編
Search
Kan Nishida
September 19, 2019
Science
0
100
ロジスティック回帰 Part 1 - 基礎編
Kan Nishida
September 19, 2019
Tweet
Share
More Decks by Kan Nishida
See All by Kan Nishida
Seminar #52 - Introduction to Exploratory Server
kanaugust
0
310
Exploratory セミナー #61 政府のオープンデータ e-Statの活用
kanaugust
0
1.1k
Exploratory セミナー #60 時系列データの加工、可視化、分析手法の紹介
kanaugust
0
1.1k
Seminar #51 - Machine Learning - How Variable Importance Works
kanaugust
0
640
Exploratory セミナー #59 テキストデータの加工
kanaugust
0
650
Seminar #50 - Salesforce Data, Clean, Visualize, Analyze, & Dashboard
kanaugust
1
370
Exploratory セミナー #58 Exploratory x Salesforce
kanaugust
0
350
Exploratory Seminar #49 - Introduction to Dashboard Cycle with Exploratory
kanaugust
0
360
Seminar #48 - Introduction to Exploratory v6.6
kanaugust
0
330
Other Decks in Science
See All in Science
Online Feedback Optimization
floriandoerfler
0
2.2k
Collective Predictive Coding Hypothesis and Beyond (@Japanese Association for Philosophy of Science, 26th October 2024)
tanichu
0
140
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
110
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
740
MCMCのR-hatは分散分析である
moricup
0
360
Symfony Console Facelift
chalasr
2
450
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
210
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
680
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
790
CV_5_3dVision
hachama
0
140
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
470
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
480
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Typedesign – Prime Four
hannesfritz
42
2.7k
A better future with KSS
kneath
239
17k
Side Projects
sachag
455
42k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
The Cult of Friendly URLs
andyhume
79
6.5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Transcript
ϩδεςΟοΫճؼ Part 1 جૅฤ Exploratory Seminar #19
EXPLORATORY
3 εϐʔΧʔ ా צҰ CEO EXPLORATORY ུྺ 2016ɺσʔλαΠΤϯεͷຽओԽͷͨΊɺExploratory, Inc Λ
্ཱͪ͛Δɻ Exploratory, Inc.ͰCEOΛΊΔ͔ͨΘΒɺσʔλαΠΤϯεɾ ϒʔτΩϟϯϓɾτϨʔχϯάͳͲΛ௨ͯ͠γϦίϯόϨʔͰ ߦΘΕ͍ͯΔ࠷ઌͷσʔλαΠΤϯεͷීٴͱڭҭʹऔΓ Ήɻ ถΦϥΫϧຊࣾͰɺ16ʹΘͨΓσʔλαΠΤϯεͷ։ൃνʔ ϜΛ͍ɺػցֶशɺϏοάɾσʔλɺϏδωεɾΠϯςϦδΣ ϯεɺσʔλϕʔεʹؔ͢Δଟ͘ͷΛੈʹૹΓग़ͨ͠ɻ @KanAugust
Vision ΑΓΑ͍ҙࢥܾఆΛ͢ΔͨΊʹ σʔλΛ͏͜ͱ͕ͨΓલʹͳΔ
Mission σʔλαΠΤϯεͷຽओԽ
6 ୈ̏ͷ σʔλαΠΤϯεɺAIɺػցֶश౷ܭֶऀɺ։ൃऀͷͨΊ͚ͩͷͷͰ͋Γ·ͤΜɻ σʔλʹڵຯͷ͋ΔਓͳΒ୭͕ੈքͰ࠷ઌͷΞϧΰϦζϜΛͬͯ ϏδωεσʔλΛ؆୯ʹੳͰ͖Δ͖Ͱ͢ɻ Exploratory͕ͦ͏ͨ͠ੈքΛՄೳʹ͠·͢ɻ
ୈ1ͷ ୈ̎ͷ ୈ̏ͷ ϓϥΠϕʔτ(ߴ͍/ݹ͍) Φʔϓϯɾιʔε(ແྉ/࠷ઌ) UI & ϓϩάϥϛϯά ϓϩάϥϛϯά 2016
2000 1976 ϚωλΠθʔγϣϯ ίϞσΟςΟԽ ຽओԽ ౷ܭֶऀ σʔλαΠΤϯςΟετ Exploratory ΞϧΰϦζϜ Ϣʔβʔɾ ମݧ πʔϧ Φʔϓϯɾιʔε(ແྉ/࠷ઌ) UI & ࣗಈԽ ϏδωεɾϢʔβʔ ςʔϚ σʔλαΠΤϯεͷຽओԽ
質問 ExploratoryɹϞμϯˍγϯϓϧ UI 伝える データアクセス データ ラングリング 可視化 アナリティクス 統計/機械学習
ϩδεςΟοΫճؼ Part 1 جૅฤ Exploratory Seminar #19
質問 伝える データアクセス データ ラングリング 可視化 アナリティクス 統計/機械学習
ઢܗճؼͷ෮श
USͷͪΌΜσʔλ
ͷྸ͍͔ͭ͘ɺͷྸΛͱʹ༧ଌ͍ͨ͠ɻ
ͷྸ vs. ͷྸ
ઢܗճؼ
Father_Age = 0.866 * Mother_Age + 6.28 ย ʢ͖ʣ
ڵຯͷର ΧςΰϦʔ/ೋ߲ 17 ΧςΰϦʔ/ଟ߲
ڵຯͷର ΧςΰϦʔ/ೋ߲ 18 ΧςΰϦʔ/ଟ߲
͜ͷϢʔβʔίϯόʔτ͢Δ͔ʁ ͜ͷऔҾෆਖ਼͔ʁ ͜ͷैۀһΊΔ͔ʁ ͜ͷͪΌΜະख़ࣇͰੜ·ΕΔ͔ʁ ೋ߲ͷ࣭
20 ͷΛೋ߲ͷ
21 ͪΌΜͷ৷ظؒ
22 premature = gestation week < 37 ੜ·Εͯ͘ΔͪΌΜະख़ࣇ͔ʁ TRUE FALSE
Numeric Binary ͷΛೋ߲ྨͷ
͕35ࡀΑΓ্͔Ͳ͏͔ɺͷྸΛͱʹ༧ଌ͍ͨ͠ɻ
ճؼͷΞϧΰϦζϜΛͬͯೋ߲ͷΛղܾͰ͖ͳ͍͔ʁ
YES YOU CAN!
͔͠͠ɺͪΐͬͱ͕ඞཁͰɺੲͷਓۤ͠Μͩɻ
͓͔͛ͰɺࢲୡϩδεςΟοΫճؼͱͯ͠͏͚ͩɻ
ͲΜͳ͜ͱͬͯΔͷ͔ͪΐͬͱ͍ͯΈ·͠ΐ͏ɻ
1. TRUE/FALSEΛ̌/̍ͱ͍͏ʹͯ֬͠Λ༧ଌ͢Δʹ͢Δ ϩδεςΟοΫճؼͷΈ
1. TRUE/FALSEΛ̌/̍ͱ͍͏ʹͯ֬͠Λ༧ଌ͢Δʹ͢Δ 2. ͦͷ··ͩͱ͍͔͕ͭ͋͘ΔͷͰσʔλΛՃ͢Δ ϩδεςΟοΫճؼͷΈ
1. TRUE/FALSEΛ̌/̍ͱ͍͏ʹͯ֬͠Λ༧ଌ͢Δʹ͢Δ 2. ͦͷ··ͩͱ͍͔͕ͭ͋͘ΔͷͰσʔλΛՃ͢Δ 3. ༧ଌ͞ΕΔ֬ΛͱʹTRUE͔FALSEͷϥϕϧ͚Λͯ͠Ξτϓοτ͢Δ ϩδεςΟοΫճؼͷΈ
1. TRUE/FALSEΛ̌/̍ͱ͍͏ʹͯ֬͠Λ༧ଌ͢Δʹ͢Δ 2. ͦͷ··ͩͱ͍͔͕ͭ͋͘ΔͷͰσʔλΛՃ͢Δ 3. ༧ଌ͞ΕΔ֬ΛͱʹTRUE͔FALSEͷϥϕϧ͚Λͯ͠Ξτϓοτ͢Δ 1. ֬ 2. Φοζ
3. ϩάɾΦοζ 4. ֬ ϩδεςΟοΫճؼͷΈ
Step by Step
1. TRUE/FALSEΛ̌/̍ͱ͍͏ʹͯ֬͠Λ༧ଌ͢Δʹ͢Δ 2. ͦͷ··ͩͱ͍͔͕ͭ͋͘ΔͷͰσʔλΛՃ͢Δ 3. ༧ଌ͞ΕΔ֬ΛͱʹTRUE͔FALSEͷϥϕϧ͚Λͯ͠Ξτϓοτ͢Δ 1. ֬ 2. Φοζ
3. ϩάɾΦοζ 4. ֬ ϩδεςΟοΫճؼͷΈ
Binary Numeric TRUE or FALSE 1 or 0
None
None
֬ 100% 0% ͷྸ
ͷ༧ଌͳͷͰઢܗճؼʹ͔͚ͯΈΑ͏ʂ
ઢܗճؼͷϞσϧ
P(Father > 35) = a * Mother_Age + b P():
֬ΛٻΊΔؔ
None
Pr(Father > 35) = 0.039 * Mother_Age -0.85
ઢܗճؼͷϞσϧ Pr(Father > 35) = 0.039 * Mother_Age -0.85
͓͞Μ͕35ࡀͷͱ͖ͷ֬ʁ
Pr(Father > 35) = 0.039 * 35 - 0.85 =
0.515 51.5% ͷ֬Ͱ35ࡀΑΓ্ɻ Pr(Father > 35) = 0.039 * Mother_Age -0.85 ͷྸ: 35
35ࡀ 51.5%
͓͞Μ͕20ࡀͷͱ͖ͷ֬ʁ
Pr(Father > 35) = 0.039 * 20 - 0.85 =
-0.07 Pr(Father > 35) = 0.039 * Mother_Age -0.85 ϚΠφε 7% ͷ֬Ͱ35ࡀΑΓ্ɻ ͷྸ: 20
20ࡀ -7%
ϚΠφεͷ֬ʁʁʁ
ϚΠφεͷ֬ڹ͖͓͠Ζ͍͕ɺ ࣮ࡍʹશ͘ҙຯΛͳ͞ͳ͍ɻ
͜ͷลΓʹ͘Δਓͨͪͷઆ໌͕͏·͘Ͱ͖ͳ͍ɻ
Ͱɺσʔλ͜ͷลʹ͔ͬ͠Γ͋ΔͷͰɺͪΌΜͱઆ໌Ͱ͖ΔϞ σϧ͕΄͍͠ɻ
ઢܗճؼ0͔Β1·Ͱͷ͔͠औΒͳ͍֬Λ༧ଌ͢ΔͨΊʹ ͋·Γద͍ͯ͠ͳ͍ɻ
্ݶɺԼݶΛ͚ͭΔͷͲ͏ͩʁ 0% 100%
ͱ͍͏͜ͱɺ͕21ࡀΑΓए͔ͬͨΒ0ˋͱ͍͏͜ͱɻ 0% 100%
0% 100% ͔͠͠ɺ࣮ࡍʹ1(ͷྸ͕35ΑΓ্ʣͷਓୡ͍Δɻ
0% 100% ͓͍͠ɺ͏Ұඞཁʂ
σʔλͷมʂ
1. TRUE/FALSEΛ̌/̍ͱ͍͏ʹͯ֬͠Λ༧ଌ͢Δʹ͢Δ 2. ͦͷ··ͩͱ͍͔͕ͭ͋͘ΔͷͰσʔλΛՃ͢Δ 3. ༧ଌ͞ΕΔ֬ΛͱʹTRUE͔FALSEͷϥϕϧ͚Λͯ͠Ξτϓοτ͢Δ 1. ֬ 2. Φοζ
3. ϩάɾΦοζ 4. ֬ ϩδεςΟοΫճؼͷΈ
ͲΜͳม͕Ͱ͖Δ͔ʁ ֬ͩͱ0͔Β1ͷؒͱ͍͏ͷൣғʹ੍ݶ͕͋Δͷ͕ͩɻ ճؼͷϞσϧΛ͏ʹ࿈ଓͰʹ੍ݶ͕ͳ͍΄͏͕͍͍ɻ [- Infinity - infinity] ੍ݶͷͳ͍࿈ଓ [0 -
1] range ੍ݶͷ͋Δൣғ
Logit (Logistic Unit) ϩδοτؔ
Logit (Logistic Unit) Log of Odds ϩάɾΦοζ
66 Φοζ(Odds) ى͖͏Δೋͭͷ݁Ռͷ֬ͷൺ
67 Φοζ Φοζ = TRUEͷ֬ / FALSEͷ֬
68 ͕35ࡀΑΓ্Ͱ͋ΔΦοζ Φοζ = TRUEͷ֬ / FALSEͷ֬ ͕35ࡀΑΓ্ͷ͕֬10% ͕35ࡀΑΓ্ͷ͕֬90% 0.1111…
= 10 / 90
֬ vs. Φοζ P(Father > 35) = 0.2 P(TRUE) =
P(Father > 35) = 0.2 P(FALSE): 1 - P(Father > 35) = 0.8 Φοζ = P(TRUE) / P(FALSE) = 0.2 / 0.8 = 0.25
֬ vs. Φοζ P(Father > 35) = 0.75 P(TRUE) =
P(Father > 35) = 0.75 P(FALSE): 1 - P(Father > 35) = 0.25 Φοζ = P(TRUE) / P(FALSE) = 0.75 / 0.25 = 3
Pr(Father > 35) = 0 0 / (1 - 0)
= 0 ֬ Φοζ Pr(Father > 35) = 0.5 0.5 / (1 - 0.5) = 1 Pr(Father > 35) = 0.9 0.9 / (1 - 0.9) = 9 Pr(Father > 35) = 0.999 0.999 / (1 - 0.999) = 999 Pr(Father > 35) = 1 1 / (1 - 1) = ແݶ ม
Probability can only range from 0 to 1, Odds can
be 0 up to any positive number. But, we still have a problem. We want the variable that can range from any negative number to any positive number.
֬ 0 1 Φοζ 0 1 ແݶ
֬ 0 1 Φοζ 0 1 ແݶ ແݶ -ແݶ 0
ཧ
ϩάɾΦοζ log( P(y) 1 - P(y) ) ΦοζʹϩάΛ͔͚Δ
None
֬ 0 1 Φοζ 0 1 ແݶ ແݶ -ແݶ 0
ϩάɾΦοζ log( Odds( P(y) )) Odds( P(y) )
ϩδοτؔ log( Odds( P(y) )) = Logit(P(y)) ֬ΛϩάɾΦοζʹมͯ͘͠ΕΔؔ
• ֬0͔Β1ͷؒͷൣғͷ͚ͩΛؚΉɻ • Φοζ0͔Βϓϥεແݶେʹଓ͘ͷൣғͷ͚ͩΛؚΉɻ • ϩάɾΦοζϚΠφεແݶେ͔ΒϓϥεແݶେͷؒͷͲΜͳ ͰऔΓ͏Δɻ
ϩάɾΦοζͲΜͳͰͱΕΔɻ ͱ͍͏͜ͱɺ࿈ଓΛ༧ଌ͢ΔͨΊͷճؼͷΞϧΰϦζϜ ͕͑Δʂ
ϩδεςΟοΫճؼ खݩʹ͋Δ༧ଌมΛݩʹͯ͠ɺڵຯͷରͰ͋Δೋ߲มͷ ϩάɾΦοζΛ༧ଌ͢ΔͨΊͷϞσϧΛ࡞ΔͨΊͷΞϧΰϦζ Ϝɻ
ઢܗճؼ ϩδεςΟοΫճؼ Logit( P(Father > 35) ) = a *
Mother_Age + b Father_Age = a * Mother_Age + b
ϩδεςΟοΫճؼΛྲྀ͠ݟͯΈΔʂ
None
None
Logit( Pr(Father > 35) ) = 0.029 * Mother_Age -
0.1012
͕40ࡀͷ࣌ɺ͕35ࡀҎ্Ͱ͋Δ֬ʁ
Logit( P(Father > 35) ) = 0.29 * Mother_Age -
10.12 Logit( P(Father > 35) ) = 0.29 * 40 - 10.12 = 1.48 ͕35ࡀҎ্Ͱ͋ΔϩάɾΦοζ1.48ɻ ???
ϩάɾΦοζͷཧղࢲͷײΛ͍͑ͯΔɻɻɻ
ϩάɾΦοζΛͻͬ͘Γฦͯ֬͠ ʹ͍ͨ͠ɻ
1. TRUE/FALSEΛ̌/̍ͱ͍͏ʹͯ֬͠Λ༧ଌ͢Δʹ͢Δ 2. ͦͷ··ͩͱ͍͔͕ͭ͋͘ΔͷͰσʔλΛՃ͢Δ 3. ༧ଌ͞ΕΔ֬ΛͱʹTRUE͔FALSEͷϥϕϧ͚Λͯ͠Ξτϓοτ͢Δ 1. ֬ 2. Φοζ
3. ϩάɾΦοζ 4. ֬ ϩδεςΟοΫճؼͷΈ
Logit(P(Father > 35)) = 0.03 * Mother_Age - 0.85 P(Father
> 35) = Logit (0.03 * Mother_Age - 0.85) -1 ٯؔ
Logit(Pr(Father > 35)) = 0.03 * Mother_Age - 0.85 Pr(Father
> 35) = (0.03 * Mother_Age - 0.85) Logistic
P(Father > 35) = Logistic(0.29 * Mother_Age - 10.12)
͕40ࡀͷ࣌ɺ͕35ࡀҎ্Ͱ͋Δ֬ʁ
P(Father > 35) = Logistic(0.29 * Mother_Age - 10.12) P(Father
> 35) = Logistic(0.29 * 40 - 10.12) = Logistic(1.48) = 0.8145 ͕40ࡀͷ࣌ɺ͕35ࡀҎ্Ͱ͋Δ֬81%ɻ
͕20ࡀͷ࣌ɺ͕35ࡀҎ্Ͱ͋Δ֬ʁ
P(Father > 35) = Logistic(0.29 * Mother_Age - 10.12) P(Father
> 35) = Logistic(0.29 * 20 - 10.12) = Logistic(-4.32) = 0.01312 ͕20ࡀͷ࣌ɺ͕35ࡀҎ্Ͱ͋Δ֬1.3%ɻ
͜ͷϩδεςΟοΫճؼͷϞσϧͲΜͳ͔Μ͡ͷͷʁ
100 ઢܗճؼͷϞσϧ vs ϩδεςΟοΫճؼͷϞσϧ
ઢܗճؼͷ߹ΛݟͯΈΔɻ
102 Father_Age = a * Mother_Age + b ʢ͖ʣ ย
ઢܗճؼͷϞσϧʢܭࢉࣜʣ
103 ʢ͖ʣ ย
104 Father_Age = 0.87 * Mother_Age + 6.28 ʢ͖ʣ ย
ઢܗճؼͷϞσϧʢܭࢉࣜʣ
None
ͷྸ ͷྸ
ͷྸ ͷྸ
How about this Logistic Regression Model?
109 ͕35Ҏ্ͷ֬ = logistic(a * Mother_Age + b) ʢ͖ʣ ย
ͱยΛௐઅ͢Δ͜ͱͰ࣮σʔλͱ Ϛον͢ΔΑ͏ͳۂઢ͕ඳ͚Δɻ
110 ϩδεςΟοΫճؼͷϞσϧ
111 ͕35Ҏ্ͷ֬ = logistic(0.29 * Mother_Age - 10.12) ย
None
֬ (Father > 35) ͷྸ
ϩδεςΟοΫۂઢ
֬ (Father > 35) ͷྸ
࣮σʔλ Ϟσϧ (ϩδεςΟοΫۂઢ) ͱͷσʔλͷฏۉΛऔΔͱɻɻɻ
ͱ͜ΖͰɺຊʹΓ͔ͨͬͨͷೋ߲ͷ֬Ͱͳ ͯ͘ɺʢTRUE/FALSEʣͷ༧ଌɻ ͷྸΛͱʹɺ͕̏̑ࡀҎ্ͳͷ͔Ͳ͏ ͔ΛΓ͍ͨɻ
ͱ͜ΖͰɺຊʹΓ͔ͨͬͨͷೋ߲ͷ֬Ͱͳ ͯ͘ɺʢTRUE/FALSEʣͷ༧ଌɻ ͷྸΛͱʹɺ͕̏̑ࡀҎ্ͳͷ͔Ͳ͏ ͔ΛΓ͍ͨɻ TRUE or FALSE ?
1. TRUE/FALSEΛ̌/̍ͱ͍͏ʹͯ֬͠Λ༧ଌ͢Δʹ͢Δ 2. ͦͷ··ͩͱ͍͔͕ͭ͋͘ΔͷͰσʔλΛՃ͢Δ 3. ༧ଌ͞ΕΔ֬ΛͱʹTRUE͔FALSEͷϥϕϧ͚Λͯ͠Ξτϓοτ͢Δ 1. ֬ 2. Φοζ
3. ϩάɾΦοζ 4. ֬ ϩδεςΟοΫճؼͷΈ
120 100% 0% 30 35 40 ͷྸ ͷྸ͕ 35ࡀҎ্Ͱ͋Δ ֬
֬Ͱͳ͘TRUE͔FALSEʹྨ͍ͨ͠ɻ
121 30 35 40 ͷྸ TRUE FALSE ͷྸ͕ 35ࡀҎ্ 100%
0% ֬Ͱͳ͘TRUE͔FALSEʹྨ͍ͨ͠ɻ
122 30 35 40 ͷྸ 50% ͷྸ͕ 35ࡀҎ্ TRUE FALSE
͖͍͠Λઃ͚Δɻྫ͑ɺ͕֬50%Λڥʹ͢Δɻ
123 30 35 40 ͷྸ 50% ͷྸ͕ 35ࡀҎ্ TRUE FALSE
TRUE FALSE ͜ͷۂઢΛ͏͜ͱͰྨ͢Δ͜ͱ͕Ͱ͖ΔΑ͏ʹͳͬͨɻ
124 30 35 40 ͷྸ 50% ͷྸ͕ 35ࡀҎ্ TRUE FALSE
TRUE FALSE ͜ͷۂઢΛ͏͜ͱͰྨ͢Δ͜ͱ͕Ͱ͖ΔΑ͏ʹͳͬͨɻ
125 30 35 40 ͷྸ 50% ͷྸ͕ 35ࡀҎ্ TRUE FALSE
TRUE FALSE ࣮ࡍʹɺͷྸ͕35ࡀҎ্ͩͬͨσʔλʹͯΊͯΈΔ
126 30 35 40 ͷྸ 50% ͷྸ͕ 35ࡀҎ্ TRUE FALSE
TRUE FALSE ͍ͨͬͯΔ ͍ͨͬͯͳ͍
127 30 35 40 ͷྸ 50% ͷྸ͕ 35ࡀҎ্ TRUE FALSE
TRUE FALSE ࣮ࡍʹɺͷྸ͕35ࡀҎ্͡Όͳ͔ͬͨσʔλʹͯΊͯΈΔ
128 30 35 40 50% ͷྸ͕ 35ࡀҎ্ TRUE FALSE TRUE
FALSE ͍ͨͬͯΔ ͍ͨͬͯͳ͍
129 30 35 40 50% ͷྸ͕ 35ࡀҎ্ TRUE FALSE TRUE
FALSE ͍ͨͬͯͳ͍ ͍ͨͬͯͳ͍
130 = 12/14 = 0.857 (85.7%) ͜ͷۂઢϞσϧΛ͏ͱɺ 85.7%ͷਫ਼Ͱ༧ଌͰ͖Δɻ
131 ༧ଌม͕1͚ͭͩͷ߹ΛΈ͖ͯͨɻ
132 ༧ଌม͕ෳͷ߹ʁ
133 ͕35Ҏ্ͷ֬ = logistic(0.3 * Mother_Age - 10) ย
༧ଌม͕Mother_Age͚ͩͷ߹
134 ͕35Ҏ্ͷ֬ = logistic(0.3 * Mother_Age + 1.2 * Mother_Japanese
- 10) ༧ଌม͕Mother_AgeͱMother_Japaneseͷ ̎ͭͷ߹
Q & A
None
• ϓϩάϥϛϯάͳ͠ RݴޠͷUIͰ͋ΔExploratoryΛੳπʔϧͱͯ͠༻͢ΔͨΊडߨதɺϏδωεͷ Λղܾ͢ΔͨΊʹඞཁͳσʔλαΠΤϯεͷख๏ͷशಘʹ100ˋूதͰ͖Δ • πʔϧͷ͍ํͰͳ͘ɺੳख๏ͷशಘ ݱͰ͑Δੳख๏ΛάϧʔϓԋशΛ௨࣮ͯ͠ࡍʹखΛಈ͔͠ͳ͕Βɺʹ͚ͭͯߦ͘ ͜ͱ͕Ͱ͖Δɻ • ࢥߟྗͱεΩϧͷशಘ
σʔλαΠΤϯεͷεΩϧशಘ͚ͩͰͳ͘ɺσʔλੳʹඞཁͳࢥߟྗशಘͰ͖Δ ಛ
࿈བྷઌ ϝʔϧ
[email protected]
ΣϒαΠτ https://ja.exploratory.io ϒʔτΩϟϯϓɾτϨʔχϯά https://ja.exploratory.io/training-jp Twitter @KanAugust
EXPLORATORY