Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Baseline Needs More Love: On Simple Word-Embedd...
Search
katsutan
April 08, 2019
Technology
0
220
Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms
文献紹介
長岡技術科学大学
勝田 哲弘
katsutan
April 08, 2019
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
190
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
180
Simple task-specific bilingual word embeddings
katsutan
0
190
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
230
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
180
Improving Word Embeddings Using Kernel PCA
katsutan
0
200
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
280
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
240
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
270
Other Decks in Technology
See All in Technology
LiteXとオレオレCPUで作る自作SoC奮闘記
msyksphinz
0
250
LangfuseでAIエージェントの 可観測性を高めよう!/Enhancing AI Agent Observability with Langfuse!
jnymyk
0
180
入社後SREチームのミッションや課題の整理をした話
morix1500
1
250
改めて学ぶ Trait の使い方 / phpcon odawara 2025
meihei3
1
600
Beyond {shiny}: The Future of Mobile Apps with R
colinfay
1
380
Classmethod AI Talks(CATs) #20 司会進行スライド(2025.04.10) / classmethod-ai-talks-aka-cats_moderator-slides_vol20_2025-04-10
shinyaa31
0
140
SDカードフォレンジック
su3158
0
490
CBになったのでEKSのこともっと知ってもらいたい!
daitak
1
160
ソフトウェア開発現代史: "LeanとDevOpsの科学"の「科学」とは何か? - DORA Report 10年の変遷を追って - #DevOpsDaysTokyo
takabow
0
200
MCPを活用した検索システムの作り方/How to implement search systems with MCP #catalks
quiver
11
4.7k
似たような課題が何度も蘇ってくるゾンビふりかえりを撲滅するため、ふりかえりのテーマをフォーカスしてもらった話 / focusing on the theme
naitosatoshi
0
400
Spring Bootで実装とインフラをこれでもかと分離するための試み
shintanimoto
7
570
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.4k
Thoughts on Productivity
jonyablonski
69
4.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.5k
RailsConf 2023
tenderlove
30
1.1k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.3k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.1k
KATA
mclloyd
29
14k
Being A Developer After 40
akosma
91
590k
Side Projects
sachag
452
42k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Transcript
Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated
Pooling Mechanisms Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 440–450 Melbourne, Australia, July 15 - 20, 2018. 文献紹介: 長岡技術科学大学 勝田 哲弘
Abstract • Simple Word-Embedding-based Models (SWEMs)と word-embedding-based RNN/CNN modelsの比較 ◦
SWEMsが多くの場合で同等、優れた精度を示す • Parameter freeのpoolingを活用するモデル ◦ hierarchical pooling ◦ parameter数が少なく済む 2
Introduction • Word embeddingは各単語を固定長のベクトルとして表現し、可変長テキ ストのモデル化によく利用されている ◦ 加算などの簡易的なものからRNN、CNNなど • RNN、CNNはパラメータが多く、計算コストが高い •
SWEMは語順情報が明示的でない、計算コストは低い • 計算コストと表現力はトレードオフ 3
Introduction • 単語分散表現で実行される単純なpooling処理が自然言語処理にいつ、 なぜ有効なのかを調査する • 3つの異なるタスク(17のデータセット)で評価 4
Simple Word-Embedding Model (SWEM) パラメータを持たないモデル • Average-Pooling(一番単純なモデル) • Max Pooling(CNNでのmax-over-time
pooling に近い) • Hierarchical Pooling ◦ ウィンドウ幅nでavg-poolingを行い、その上にmax-pooling 5
Parameters & Computation Comparison 6
Experiments • タスク: ◦ 文書分類(トピック分類、感情分類、オントロジー分類 ) ◦ テキストマッチング ◦ 文分類
◦ 17データセット • モデル ◦ GloVe ◦ MLP ◦ Adam 7
Document Categorization 8
Interpreting model predictions 殆どの値が0付近に集中する タスクがテキスト中のあるキーワードに依 存していることを示唆 各次元ごとに選択された単語は関連性や 共通のトピックに対応する 9
Interpreting model predictions 10
Importance of word-order information 11
Text Sequence Matching 12
Short Sentence Processing 13
Extension to other languages • Sogou news corpus(a Chinese dataset
represented by Pinyin) ◦ SWEM-concat accuracy : 91.3% ◦ SWEM-hier (window size of 5) accuracy : 96.2% ◦ CNN (95.6%) and LSTM (95.2%) • より語順に敏感な中国語においても最高精度に匹敵する 14
Conclusions 17のデータセットでSWEM、CNN、LSTMのモデル間の比較を行った • 単純なプーリングは長い文書の表現に効果的、短い文にはCNN/LSTMが 最適 • 感情分類はトピック分類よりも語順に敏感である、hierarchical poolingは CNN/LSTMと同等の結果が得られる •
NLI、QAでは単純なpoolingが優れた精度を出す • SWEM Max Poolingでは、分散表現の各次元にトピックと対応付けられる ような意味的パターンが見られた 15