Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Baseline Needs More Love: On Simple Word-Embedd...
Search
katsutan
April 08, 2019
Technology
0
230
Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms
文献紹介
長岡技術科学大学
勝田 哲弘
katsutan
April 08, 2019
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
220
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
200
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
250
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
200
Improving Word Embeddings Using Kernel PCA
katsutan
0
220
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
310
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
Other Decks in Technology
See All in Technology
定期的な価値提供だけじゃない、スクラムが導くチームの共創化 / 20251004 Naoki Takahashi
shift_evolve
PRO
4
350
KMP の Swift export
kokihirokawa
0
340
Escaping_the_Kraken_-_October_2025.pdf
mdalmijn
0
150
JAZUG 15周年記念 × JAT「AI Agent開発者必見:"今"のOracle技術で拡張するAzure × OCIの共存アーキテクチャ」
shisyu_gaku
0
140
そのWAFのブロック、どう活かす? サービスを守るための実践的多層防御と思考法 / WAF blocks defense decision
kaminashi
0
120
能登半島災害現場エンジニアクロストーク 【JAWS FESTA 2025 in 金沢】
ditccsugii
0
180
SoccerNet GSRの紹介と技術応用:選手視点映像を提供するサッカー作戦盤ツール
mixi_engineers
PRO
1
190
AI時代だからこそ考える、僕らが本当につくりたいスクラムチーム / A Scrum Team we really want to create in this AI era
takaking22
7
4k
職種別ミートアップで社内から盛り上げる アウトプット文化の醸成と関係強化/ #DevRelKaigi
nishiuma
2
160
The Cake Is a Lie... And So Is Your Login’s Accessibility
leichteckig
0
100
プロポーザルのコツ ~ Kaigi on Rails 2025 初参加で3名の登壇を実現 ~
naro143
1
180
能登半島地震で見えた災害対応の課題と組織変革の重要性
ditccsugii
0
190
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Statistics for Hackers
jakevdp
799
220k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
It's Worth the Effort
3n
187
28k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Bash Introduction
62gerente
615
210k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
YesSQL, Process and Tooling at Scale
rocio
173
14k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
Git: the NoSQL Database
bkeepers
PRO
431
66k
Practical Orchestrator
shlominoach
190
11k
Transcript
Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated
Pooling Mechanisms Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 440–450 Melbourne, Australia, July 15 - 20, 2018. 文献紹介: 長岡技術科学大学 勝田 哲弘
Abstract • Simple Word-Embedding-based Models (SWEMs)と word-embedding-based RNN/CNN modelsの比較 ◦
SWEMsが多くの場合で同等、優れた精度を示す • Parameter freeのpoolingを活用するモデル ◦ hierarchical pooling ◦ parameter数が少なく済む 2
Introduction • Word embeddingは各単語を固定長のベクトルとして表現し、可変長テキ ストのモデル化によく利用されている ◦ 加算などの簡易的なものからRNN、CNNなど • RNN、CNNはパラメータが多く、計算コストが高い •
SWEMは語順情報が明示的でない、計算コストは低い • 計算コストと表現力はトレードオフ 3
Introduction • 単語分散表現で実行される単純なpooling処理が自然言語処理にいつ、 なぜ有効なのかを調査する • 3つの異なるタスク(17のデータセット)で評価 4
Simple Word-Embedding Model (SWEM) パラメータを持たないモデル • Average-Pooling(一番単純なモデル) • Max Pooling(CNNでのmax-over-time
pooling に近い) • Hierarchical Pooling ◦ ウィンドウ幅nでavg-poolingを行い、その上にmax-pooling 5
Parameters & Computation Comparison 6
Experiments • タスク: ◦ 文書分類(トピック分類、感情分類、オントロジー分類 ) ◦ テキストマッチング ◦ 文分類
◦ 17データセット • モデル ◦ GloVe ◦ MLP ◦ Adam 7
Document Categorization 8
Interpreting model predictions 殆どの値が0付近に集中する タスクがテキスト中のあるキーワードに依 存していることを示唆 各次元ごとに選択された単語は関連性や 共通のトピックに対応する 9
Interpreting model predictions 10
Importance of word-order information 11
Text Sequence Matching 12
Short Sentence Processing 13
Extension to other languages • Sogou news corpus(a Chinese dataset
represented by Pinyin) ◦ SWEM-concat accuracy : 91.3% ◦ SWEM-hier (window size of 5) accuracy : 96.2% ◦ CNN (95.6%) and LSTM (95.2%) • より語順に敏感な中国語においても最高精度に匹敵する 14
Conclusions 17のデータセットでSWEM、CNN、LSTMのモデル間の比較を行った • 単純なプーリングは長い文書の表現に効果的、短い文にはCNN/LSTMが 最適 • 感情分類はトピック分類よりも語順に敏感である、hierarchical poolingは CNN/LSTMと同等の結果が得られる •
NLI、QAでは単純なpoolingが優れた精度を出す • SWEM Max Poolingでは、分散表現の各次元にトピックと対応付けられる ような意味的パターンが見られた 15