Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
週次KPIレポートをconfluenceへUpするためにやったこと
Search
Kazuhiro Maeda
October 26, 2019
Technology
1
1.5k
週次KPIレポートをconfluenceへUpするためにやったこと
Tokyo.R #82 応用セッションでの発表スライド(公開用)です。
Kazuhiro Maeda
October 26, 2019
Tweet
Share
More Decks by Kazuhiro Maeda
See All by Kazuhiro Maeda
Will Positron accelerate us? (update)
kazutan
1
120
積もってく会議メモをどうにかしたかった
kazutan
0
250
分析システムにR Markdownを組み込む
kazutan
0
500
Rに管理されてみる
kazutan
0
460
私とR、そしてキャリア
kazutan
2
3.8k
tubeplayR v1.0への道
kazutan
2
220
R, Git, Droneを使ってconfluenceへのKPI予測レポートを自動化した話
kazutan
2
640
xaringanパッケージの内容をちょっとだけ
kazutan
0
1.1k
最近のRパッケージ開発事情
kazutan
0
360
Other Decks in Technology
See All in Technology
評価の納得感を2段階高める「構造化フィードバック」
aloerina
1
160
IIWレポートからみるID業界で話題のMCP
fujie
0
160
Tenstorrent 開発者プログラム
tenstorrent_japan
0
310
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
17k
AIにどこまで任せる?実務で使える(かもしれない)AIエージェント設計の考え方
har1101
3
1k
QAはソフトウェアエンジニアリングを学んで実践するのが大事なの
ymty
1
380
Nonaka Sensei
kawaguti
PRO
3
650
今からでも間に合う! 生成AI「RAG」再入門 / Re-introduction to RAG in Generative AI
hideakiaoyagi
1
160
JSX - 歴史を振り返り、⾯⽩がって、エモくなろう
pal4de
2
110
工具人的一生: 開發很多 AI 工具讓我 慵懶過一生
line_developers_tw
PRO
0
140
doda開発 生成AI元年宣言!自家製AIエージェントから始める生産性改革 / doda Development Declaration of the First Year of Generated AI! Productivity Reforms Starting with Home-grown AI Agents
techtekt
0
140
Tensix Core アーキテクチャ解説
tenstorrent_japan
0
360
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
900
4 Signs Your Business is Dying
shpigford
184
22k
It's Worth the Effort
3n
184
28k
Designing for humans not robots
tammielis
253
25k
The Language of Interfaces
destraynor
158
25k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Code Reviewing Like a Champion
maltzj
524
40k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
650
Transcript
週次KPIレポートを confluenceへUpするためにやったこと Tokyo.R #82 前田和寛(kazutan) 2019-10-26
はじめに 2 / 40
はじめに 自己紹介 名前/アカウント 前田和寛(Maeda Kazuhiro) @kazutan Twitter GitHub Qiita, etc...
所属 LINE Fukuoka株式会社 開発センター DataLabs DataAnalysisチーム マネージャー 3 / 40
はじめに 業務 LINEグループにあるデータを活用して様々な課題にアプローチ サービス関連 サービスの成長につながる分析 施策の効果検証など オペレーション関連 オペレーションの可視化 オペレーションの効率化につながる分析など データ分析環境関連
分析環境の準備・構築 ライブラリ・パッケージ開発など 4 / 40
はじめに 今日のお話 私が担当したサービス関連の分析業務で、実際に構築した事例を紹介 具体的なデータおよびコードは社内情報のため伏せてます 量が多いので、かいつまんで説明します 詳細の実装については個人的に質問してください 5 / 40
1.今回の課題 6 / 40
1.今回の課題 背景(かんたんに) 弊社のとあるサービスにて 過去8週分のweeklyでの各KPI指標を毎週算出してレポートしていた UU、訪問数、その他... 以下のようなリクエストが もっと長期的な流れを見たい 異常値かどうか判断したい 将来予測も出してほしい 7
/ 40
1.今回の課題 課題(かんたんに) 大枠の処理は以下の通り weelky KPIsを算出 算出したKPIスコアを用いてモデリング fitting 予測値と実測値から異常値を検出 forecast レポート作成
各KPI指標をplot 関係者が閲覧できる適切な場所へレポート作成 8 / 40
1.今回の課題 要件整理 KPI算出 データはすべて分析用DBにある でもデータがかなり大きい KPI指標によって参照テーブルや集計ロジックが異なる 単一のクエリだけですべて算出するのは厳しい 各KPI指標ごとにSQLでデータを切り出して、Rでいい感じにまとめる いい感じにまとめたら、中間テーブルへ書き出す 9
/ 40
1.今回の課題 モデリング KPIテーブルからデータを読み込み、Rでモデリング prophetを利用 レポートに必要なスコアをまとめ、中間テーブルへ書き出す レポート作成の際はこのテーブルだけを読み込めばいいようにする レポート作成 plot作成 ggplot2を採用 予測範囲を外れている実測値には予めフラグ処理
レポート作成 R Markdown で雛形を作成 レポート設置 confluence上に設置 conflrを活用 10 / 40
1.今回の課題 アプローチ 11 / 40
2.前処理とKPI算出 12 / 40
2.前処理とKPI算出 対象処理 KPI算出 データはすべて分析用DBにある でもデータがかなり大きい KPI指標によって参照テーブルや集計ロジックが異なる 単一のクエリだけですべて算出するのは厳しい 各KPI指標ごとにSQLでデータを切り出して、Rでいい感じにまとめる いい感じにまとめたら、中間テーブルへ書き出す 13
/ 40
2.前処理とKPI算出 ここでのアプローチ 14 / 40
2.前処理とKPI算出 glueとpurrrを使ったクエリ実行(1) glueパッケージ https://glue.tidyverse.org/ 一部パラメータ化された文字列(雛形)に対して、後から文字列を挿入 同一のKPIを算出する場合、ロジックは同一 これを出したい期間ごとにクエリを作成すればいい 15 / 40
2.前処理とKPI算出 SQLファイルの例: select (略) from (略) where date between {start_date}
and {end_date} Rでの実行例: # 上述 kpi1_sql_base 格納 kpi1_sql glue(kpi1_sql_base, start_date = "20191001", end_date = "20191007") でも、これだと各期間でひとつずつやっていくのが面倒 16 / 40
2.前処理とKPI算出 glueとpurrrを使ったクエリ実行(2) purrrも活用 先程のRスクリプトを以下のように変更: # 開始日 終了日 準備 start_date c("20191001",
"20191008", "20191015") end_date c("20191007", "20191014", "20191022") # 関数 定義 f_create_sql_kpi function(sql, start_date, end_date) { glue(sql, start_date = start_date, end_date = end_date) } # 作成 kpi1_sql map2(start_date, end_date, f_create_sql_kpi, sql = kpi1_sql_base ) 17 / 40
2.前処理とKPI算出 glueとpurrrを使ったクエリ実行(3) どうせならクエリ実行もやってしまえばいい # 関数 変更 f_create_kpi function(sql, start_date, end_date)
{ sql glue(sql, start_date = start_date, end_date = end_date) df ( sql 実行 df 出 処理 書 ) return(df) } # 一気 kpi1_df map2_dfr(start_date, end_date, f_create_kpi, sql = kpi1_sql_base) 18 / 40
2.前処理とKPI算出 算出した指標をまとめ、KPIテーブルに書き込む 詳細は省略 KPIごとにdfが存在するので、あとはRでハンドリングすればOK ハンドリングが終われば、RからDBへ書き込み処理 なお弊社には社内ライブラリでDBにかんたんに接続してread/writeできる関数が準備して あります 19 / 40
3.モデリング 20 / 40
3.モデリング 対象処理 モデリング KPIテーブルからデータを読み込み、Rでモデリング prophetを利用 レポートに必要なスコアをまとめ、中間テーブルへ書き出す レポート作成の際はこのテーブルだけを読み込めばいいようにする 21 / 40
3.モデリング ここでのアプローチ 22 / 40
3.モデリング prophetとpurrrによるfitting(1) KPIテーブル(tbl_kpis )は以下のような感じ: start_date end_date var_name value 20191001 20191007
UU 13612467 20191008 20191014 UU 11466342 20191015 20191022 UU 16245072 20191001 20191007 visits 40083382 20191008 20191014 visits 30704666 23 / 40
3.モデリング prophetとpurrrによるfitting(1) tidyなデータにしているので、var_name でnestしてprophetしたい まずはfittingしてreportingに必要な指標を取得する関数を準備 # prophet 関数 準備 fit_by_prophet
function(df, (prophet 引数 準備) ) { fit prophet(df = df, (prophet 引数 引 渡 ) ) future make_future_dataframe(fit, (各種設定)) pred predict(fit, future) res pred %>% select(ds, starts_with("yhat")) %>% left_join(fit$history, by = c("ds" = "ds")) %>% select( c(floor, t, y_scaled)) return(res) } 24 / 40
3.モデリング prophetとpurrrによるfitting(2) あとは以下のような感じでnestしてpurrrのmapしていけばOK fits_weekly_kpi kpi_table %>% group_by(var_name) %>% nest() %>%
mutate(pred = map(data, fit_by_prophet, (各種 設定 ) )) %>% select(var_name, pred) %>% unnest() %>% mutate(start_date = ymd(ds)) %>% select(start_date, var_name, y, yhat, yhat_lower, yhat_upper) 25 / 40
3.モデリング 結果をKPIテーブルに書き込む 詳細は省略 上記のコードでdfができるので、それをまるっと書き込む なお弊社には社内ライブラリでDBにかんたんに接続してread/writeできる関数が準備して あります 26 / 40
4.レポート作成 27 / 40
4.レポート作成 対象処理 レポート作成 plot作成 ggplot2を採用 予測範囲を外れている実測値には予めフラグ処理 レポート作成 R Markdown で雛形を作成
レポート設置 confluence上に設置 conflrを活用 28 / 40
4.レポート作成 ここでのアプローチ 29 / 40
4.レポート作成 ggplot2によるKPI可視化(1) 今回のplotに利用する変数は以下の通り: var_name: KPI指標の名称 start_date: 週の開始日 y: 実測の集計値 yhat:
fitさせた予測値 yhat_upper, yhat_lower: 予測のCI上限, 下限 今回は加え、yがyhat_upper, yhat_lowerの区間から外ているかどうかのフラグ変数 (outlier)を作成 これらを一気にやる関数を準備 30 / 40
4.レポート作成 ggplot2によるKPI可視化(2) 準備した関数はこんな感じ: plot_kpi function(df, target_var, plot_title, decimal = FALSE)
{ # 変数名 使 filter & 変数追加 df_for_plot filter(df, var_name target_var) %>% mutate(outliers = case_when( y > yhat_upper ~ "upper", y < yhat_lower ~ "lower", is.na(y) ~ NA_character_, TRUE ~ "middle" )) subtitle_text paste("対象 :", min(filter(df_for_plot, !is.na(y))$start_dat "-", max(filter(df_for_plot, !is.na(y))$start_dat 31 / 40
4.レポート作成 (続き) #ggplot p ggplot(df_for_plot) + # geoms geom_ribbon(aes(x =
start_date, ymin = yhat_lower, ymax = yhat_upper), fill = "#0000ff33") + geom_line(aes(x = start_date, y = yhat), color = "#0000ffaa") + geom_point(aes(x = start_date, y = y, color = outliers), show.legend = FALSE, na.rm = TRUE) + # scales scale_x_date(date_breaks = "1 month", date_labels = "%Y/%m") + scale_y_continuous(labels = if (!decimal) scales comma else waiver()) + scale_color_manual(values = c("red", "black", "blue", "gray")) + # labels and themes theme_bw() + labs(title = plot_title, subtitle = subtitle_text, caption = "点 実測値 実線 帯 予測値 \n将来8週間 予測 \n日 x = "", y = "") # output p } 32 / 40
4.レポート作成 ggplot2によるKPI可視化(3) 仕上がりはこんな感じになる: 33 / 40
4.レポート作成 レポート用Rmd作成 内容自体はシンプルなので詳細は省略 setupチャンクで予測値を含むKPI指標テーブルを読み込む 上述の関数に上記テーブルデータと必要な引数をセットするchunkを準備 これを各KPIごとに準備してあげればOK 34 / 40
4.レポート作成 レポートの設置場所はどうする? とりまく状況 弊社ではConfluence Wikiが最も利用されている すでに多くの社員が利用していて、社内共通のプラットフォームで利用できる でも、コピペでWiki編集するのはつらすぎる 解決策 conflrパッケージ https://github.com/line/conflr
LINEが公開しているパッケージ Rmdから直接conflrへUpload可能 RStudioのAddinから実行すればOK!!!!!!! 35 / 40
まとめ 36 / 40
まとめ 課題の確認 weelky KPIsを算出 算出したKPIスコアを用いてモデリング fitting 予測値と実測値から異常値を検出 forecast レポート作成 各KPI指標をplot
関係者が閲覧できる適切な場所へレポート作成 37 / 40
まとめ 達成するためのアプローチ 38 / 40
まとめ 今回の限界および課題 ホントは細かい部分でもっと色々やってる 発表の尺や公表できない部分があり省略してます 実際はこの3ステップをRScriptにそれぞれまとめている そしてそれをオーガナイズするRScriptを準備して実行してる この仕組みで、conflrでの作業がどうしても手作業が残った 構築した当時、conflrはAddinからしかUpできなかった 現在ではAddin経由しなくてもRのコマンドで実行可能 Jenkinsやdroneなどと組み合わせて完全自動化できる!!
39 / 40
Enjoy! 40 / 40