Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sports Analyst Meetup #13 (2022/11/26)
Search
Keisuke Fujii
November 26, 2022
Technology
0
890
Sports Analyst Meetup #13 (2022/11/26)
サッカーの軌道予測を用いたオフボール選手の評価(MLSA’22)
Keisuke Fujii
November 26, 2022
Tweet
Share
More Decks by Keisuke Fujii
See All by Keisuke Fujii
2025/6/21 日本学術会議公開シンポジウム発表資料
keisuke198619
2
580
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
570
MLSA (Machine Learning and Data Mining for Sports Analytics) 2023 参加報告
keisuke198619
1
520
集団スポーツの動きに関するデータ分析の概要と今後の展望
keisuke198619
0
360
最新のスポーツアナリティクス研究論文はどこで読めるか?
keisuke198619
0
340
スポーツ戦術をAIのデータ解析で評価する
keisuke198619
0
1.3k
Sports Analyst Meetup #12 Keisuke Fujii
keisuke198619
0
930
Learning interaction rules from multi-animal trajectories via augmented behavioral models
keisuke198619
0
390
Other Decks in Technology
See All in Technology
Connect 100+を支える技術
kanyamaguc
0
200
開発生産性を組織全体の「生産性」へ! 部門間連携の壁を越える実践的ステップ
sudo5in5k
2
6.6k
KubeCon + CloudNativeCon Japan 2025 Recap
ren510dev
1
380
Should Our Project Join the CNCF? (Japanese Recap)
whywaita
PRO
0
330
無意味な開発生産性の議論から抜け出すための予兆検知とお金とAI
i35_267
4
12k
KubeCon + CloudNativeCon Japan 2025 Recap Opening & Choose Your Own Adventureシリーズまとめ
mmmatsuda
0
270
自律的なスケーリング手法FASTにおけるVPoEとしてのアカウンタビリティ / dev-productivity-con-2025
yoshikiiida
1
15k
面倒な作業はAIにおまかせ。Flutter開発をスマートに効率化
ruideengineer
0
240
Delta airlines®️ USA Contact Numbers: Complete 2025 Support Guide
airtravelguide
0
340
マネジメントって難しい、けどおもしろい / Management is tough, but fun! #em_findy
ar_tama
7
1k
Geminiとv0による高速プロトタイピング
shinya337
0
260
CDKTFについてざっくり理解する!!~CloudFormationからCDKTFへ変換するツールも作ってみた~
masakiokuda
1
110
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
54
13k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Practical Orchestrator
shlominoach
189
11k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
A better future with KSS
kneath
238
17k
Transcript
Sports Analyst Meetup #13 サッカーの軌道予測を用いた オフボール選手の評価(MLSA’22) 藤井 慶輔 (@keisuke_fj) 1
論文(詳細): https://arxiv.org/abs/2206.01899 MLSA’22: https://dtai.cs.kuleuven.be/events/MLSA22/index.php 寺西真聖さん、筒井和詩さん、武田一哉先生(全て名大)との共同研究です 2022/11/26
MLSA (Machine Learning and Data Mining for Sports Analytics)とは 機械学習(ML)とデータマイニング(DM)の主要な国際会議(ECML-PKDD)で
開催される、Sports AnalyticsのML-DM workshop (今回で9回目) 2 https://dtai.cs.kuleuven.be/events/MLSA22/links.php
MLSA’22のスケジュール 3 サッカー サッカー サッカー テニス サイクリング テニス サイクリング バスケ
サッカー サッカー テニス オンラインで25:00
サッカーの攻撃選手の評価 ボール周りの公開データのみ使用した評価(例:[Decroos+19]) 評価できる選手に限界、同時に複数選手の評価ができない 全選手の位置(非公開)を使用した評価 • ボールを受け取る選手の評価(例:[Spearman18]) • 得点に関係なくスペースを作る動きの評価(例:[Fernandez+18])
ボールを受け取らず得点機会を生み出す選手の評価が困難 本研究の概要 オフボール選手が、機械学習を 用いて予測された動きと比べて、 どのように動いたことが得点機会 の創出に寄与するかを評価 4 予測(薄色)より、A1がD1を引き付け A2のスペースを作った!
提案: Creating Off-Ball Scoring Opportunity (C-OBSO) 目的: ボール非保持選手 𝑖が得点機会をどれだけ創ったか(評価値) 𝑽𝒊
の算出 方法: シュート等をした選手 𝑘の評価 𝑽𝒌 を、選手 𝑖を軌道予測した時𝑽𝒌 ′ と比較 実際の選手𝑘の評価 𝑽𝒌 − 選手i の予測に基づく選手𝑘の評価 𝑽𝒌 ′ 𝑉𝑖 = − 選手 𝑖 選手 𝑖 (予測) 選手 𝑘 選手 𝑘 守備は 2人を 予測 5
参考:ボール非保持の評価 𝑽𝒌 (OBSO [Spearman18]) コート上の地点 𝑟に価値(下記3要素)を割り当てる • 占有率(Control):𝐶𝑟 • 遷移率(Transition):𝑇𝑟
• 得点率(Score):𝑆𝑟 ある試合状態𝐷における得点確率を 𝑽𝒌 とし、以下のように表す 𝑽𝒌 = 𝑃 𝐺 𝐷 = Σ𝑟∈ℝ×ℝ 𝑃(𝐶𝑟 ∩ 𝑇𝑟 ∩ 𝑆𝑟 |𝐷) →ボールが来たらどれだけ点を入れられるか(ポジショニング)を評価 占有率 𝐶 遷移率 𝑇 得点率 𝑆 ボール非保持の評価 OBSO 6
C-OBSO の算出例 A1(評価対象)が予測よりD1選手を引き付けてA2に貢献 A2のスペースをA1が作った! 𝟎. 𝟎𝟎𝟕𝟗 C−OBSO: 𝑉A1 = 𝑉A2
− 𝑉A2 ′ 0.0409 0.0330 (実際) (予測) 7 予測(薄色)より、 A1がD1を引き付けた
データセット J1 2019 横浜FM 全対戦試合: 34試合(データスタジアム社(*1)) • イベントデータ(パス・シュート等の行動ラベルとボール座標) • トラッキングデータ(選手全員とボールの座標)
選手軌道予測(グラフ変分RNN[Yeh+19]を利用) と評価 • 2秒の系列を使ってその後の4秒を軌道予測(攻撃1選手、守備2選手) • 予測: 対戦相手の攻撃系列(*2) 94208系列で学習、10477系列で検証 • 評価: 横浜FMのシュート系列(*3) 412系列で推論、C-OBSO算出 *1 情報システム研究機構統計数理研究所 医療健康データ科学研究センター、データスタジアム株式会社 *2 攻撃系列:同一チームの連続した攻撃 *3 シュート系列:シュートに至るまでの同一チームの連続した攻撃(連続していない攻撃は除外) 8
結果例: J1 2019 横浜FMのC-OBSOと年俸*との関係 • C-OBSOと年俸は正の相関(𝜌 = 0.45, 𝑝 <
0.05)だがOBSOは相関なし • C-OBSO-年俸の外れ値は、(最)優秀選手賞を受賞 C-OBSOは選手の総合評価(年俸,個人賞)を説明できる可能性あり 9 *1 Soccer-Money.net https://soccer-money.net (アクセス日2021/1/9) 優秀選手賞 最優秀選手賞
実験結果:得点上位選手の有識者による採点*とC-OBSO • 採点は上位3選手全員に得点と有意な相関あり(𝑝 < 0.05) • 仲川選手のみC-OBSOと正の相関(𝜌 = 0.75, 𝑝
< 0.05)、他の選手はなし • 仲川選手は味方への貢献も高かったため、平均採点1位&MVPに繋がった と推察される 10 0 0.005 0.01 0.015 0.02 0.025 4 5 6 7 8 C-OBSO rating Nakagawa * サッカーダイジェストweb J1採点・寸評 https://www.soccerdigestweb.com/tag_list/tag_search=1&tag_id=120(参照2022/1/9) 0 0.005 0.01 0.015 0.02 0.025 4 5 6 7 8 C-OBSO rating Marcos
まとめ • 得点機会を創出するオフボールの選手の評価指標C-OBSOを提案 • 正確な選手軌道予測に基づき、実際の評価値との差分で評価 • C-OBSOは、味方の得点機会を創出する指標としての有効性を示唆 今後の展望: • チームの特性に合わせた評価
• シュート以外の場面も含めた評価 • 軌道予測を用いずに、行動価値を直接計算 謝辞 • データ提供:情報・システム研究機構統計数理研究所 医療健康データ 科学研究センター、データスタジアム 株式会社 • 議論:Scott Atom氏、大西 正輝氏 • 科研費:20H04075, 20H04087, JST Presto JPMJPR20CA Full paper: https://arxiv.org/abs/2206.01899 11