Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MLSA (Machine Learning and Data Mining for Spor...
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Keisuke Fujii
October 28, 2023
Technology
1
570
MLSA (Machine Learning and Data Mining for Sports Analytics) 2023 参加報告
Sports Analyst Meetup #14 & JSAA Lab LT会 vol.3
Keisuke Fujii
October 28, 2023
Tweet
Share
More Decks by Keisuke Fujii
See All by Keisuke Fujii
スポーツAIの民主化と発展:アカデミアの立場から
keisuke198619
0
190
2025/6/21 日本学術会議公開シンポジウム発表資料
keisuke198619
2
970
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
660
集団スポーツの動きに関するデータ分析の概要と今後の展望
keisuke198619
0
440
最新のスポーツアナリティクス研究論文はどこで読めるか?
keisuke198619
0
400
Sports Analyst Meetup #13 (2022/11/26)
keisuke198619
0
950
スポーツ戦術をAIのデータ解析で評価する
keisuke198619
0
1.4k
Sports Analyst Meetup #12 Keisuke Fujii
keisuke198619
0
980
Learning interaction rules from multi-animal trajectories via augmented behavioral models
keisuke198619
0
420
Other Decks in Technology
See All in Technology
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
210
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.4k
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
130
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.2k
AIエージェントに必要なのはデータではなく文脈だった/ai-agent-context-graph-mybest
jonnojun
1
250
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.6k
OpenShiftでllm-dを動かそう!
jpishikawa
0
140
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
コンテナセキュリティの最新事情 ~ 2026年版 ~
kyohmizu
6
1.9k
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
110
AWS DevOps Agent x ECS on Fargate検証 / AWS DevOps Agent x ECS on Fargate
kinunori
2
170
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
670
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
170
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
The agentic SEO stack - context over prompts
schlessera
0
650
So, you think you're a good person
axbom
PRO
2
1.9k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
68
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
780
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
330
Transcript
MLSA (Machine Learning and Data Mining for Sports Analytics) 2023
参加報告 藤井 慶輔 名古屋大学 大学院情報学研究科 2023/10/28 Sports Analyst Meetup #14 & JSAA Lab LT会 vol.3
自己紹介:藤井 慶輔(ふじい けいすけ) 名古屋大学の教員 スポーツなどの複雑な運動を対 象とした機械学習などの 情報 技術について研究 2005-14 京大総人・人環 2014-17
名大保体(学振PD) 2017-19 理研AIP 2019-2021 名大情報(助教) 2021- 名大情報(准教授) 前回Spoana: Sports Analyst Meetup #13 (2022/11/26) (MLSA'22の採択論文を発表) 前回SARPキックオフ: 最新のスポーツアナリティクス研究論文はどこで読めるか? ホームページ: https://sites.google.com/view/keisuke198619jp/
最新のスポーツアナリティクス研究論文はどこで読めるか? SARPに整理されています https://jsaasarp.notion.site/Confe rences-and-Journals-e910239ba 3244e1d901bee230fca1caf MLSA (Machine Learning and Data
Mining for Sports Analytics)はここ→ スポーツアナリティクス /機械学習の論文はどこで読めるか?|note (MIT SSACが有名だが、MLSAも 歴史があり、より学術的な会議)
MLSA (Machine Learning and Data Mining for Sports Analytics) 機械学習(ML)とデータマイニング(DM)の主要な国際会議(ECML-PKDD)で開催され
る、Sports AnalyticsのML-DM workshop (2023年で10回目) https://dtai.cs.kuleuven.be/events/MLSA23/schedule.php 2023はイタリア(トリノ) おおよそ6月投稿、9月発表のスケジュール
MLSA’23の スケジュール サッカー ホッケー サイクリング バスケ ハンド 10種目く らい ラグビー
卓球 セーリング 招待講演 (スポーツ全般) ※2023/10/20現在、 全論文はアクセス出来 ない... [論文は個人共有] [PDF] [PDF] [Youtube] [PDF] [PDF] https://dtai.cs.kuleuve n.be/events/MLSA23/ schedule.php 雑な全体メモ:
1. Pass Receiver and Outcome Prediction in Soccer Using Temporal
Graph Networks [Rahimian+23, MLSA] (a)RSPと(b)RPPは右のモデルで別々に学習 パスのdifficultyやcreativityを評価 選択は味方だけ考える 結果は相手選手も考慮する パスが出そうで、通りそうな選手は? (右の(a)と(b)の組合せ)
2. Exploring Table Tennis Analytics: Domination, Expected Score and Shot
Diversity [Calmet+23, MLSA] 色んなデータの属性(右)を 既存 の評価指標(下)に入れたい GitHub - centralelyon/table-tennis-analytics (まだ空) 得点期待値、支配度など(左)の計算に上記の情報を入れて 計算した
その他感想など • 前回はハイブリッドのオンライン側で、あっさり終わったが今回は充実 • 今回はcoffee break, lunch break, welcome receptionでしっかり話せた
◦ バスケのトラッキングデータは、 github/rajshah4しかないよね...みたいな話など • ただし日本から気軽に行けないので、情報共有したい ◦ 雑な全体メモを、以下に置きます ◦ https://docs.google.com/document/d/1BytPri9iYMnE6kqL34CEH65ifIGpa22bI3aQ-PON Acg/edit?usp=sharing • 普段は以下にあるような研究をしています ◦ スポーツ戦術をAIのデータ解析で評価する(セミナーのスライド) ◦ ホームページ: https://sites.google.com/view/keisuke198619jp/ • ご質問やご意見などありましたら以下にご連絡お願いします ◦ mail:
[email protected]
◦ X (twitter): @keisuke_fj