Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
今日から始める Flood.io / fuka-taisaku-night-01
Search
kikunantoka
February 06, 2019
Technology
0
320
今日から始める Flood.io / fuka-taisaku-night-01
- ギフティでの負荷対策の重要性
- Flood.io について
- Flood.io の活用
- 30万RPM を耐えるためにやったこと
kikunantoka
February 06, 2019
Tweet
Share
More Decks by kikunantoka
See All by kikunantoka
個人開発しているサービスのインフラをAWSからGCPに載せ替えた話 💪 / kojin_kaihatsu_night_3
kikunantoka
0
1.1k
Gatsby.jsとCloud Functionsで毎週自動でコンテンツが更新され続けるフレームワーク比較サイトを作った話 / gotanda_js_13
kikunantoka
1
2.4k
Gatsby.jsとCloud Functionsで毎週自動でコンテンツが更新され続けるフレームワーク比較サイトを作った話 / frontend_night_1
kikunantoka
3
1.6k
サービスがゼロからN億円規模になるまに実践した7つのやっていき / 7_yatteiki_battle_conference_u30_2019
kikunantoka
1
1.3k
Gatsby.jsとNetlifyとの付き合い方 / gatsby-js-and-netlify
kikunantoka
3
590
Gatsby.jsで導入事例をバシバシ読めるSPAなLPを作った話 / gatsby-js-for-biz-lp
kikunantoka
2
660
Gatsby.jsで導入事例をバシバシ読めるSPAなLPを作った話 / gatsby-js-for-biz-lp
kikunantoka
1
1.8k
20万RPMを捌くRailsアプリケーションの作り方
kikunantoka
0
810
MVPに絞ったら個人開発でもちゃんとリリースできた話
kikunantoka
1
520
Other Decks in Technology
See All in Technology
LLMで構造化出力の成功率をグンと上げる方法
keisuketakiguchi
0
240
解消したはずが…技術と人間のエラーが交錯する恐怖体験
lamaglama39
0
190
クマ×共生 HACKATHON - 熊対策を『特別な行動」から「生活の一部」に -
pharaohkj
0
290
OPENLOGI Company Profile for engineer
hr01
1
37k
相互運用可能な学修歴クレデンシャルに向けた標準技術と国際動向
fujie
0
200
AI人生苦節10年で会得したAIがやること_人間がやること.pdf
shibuiwilliam
1
270
KubeCon + CloudNativeCon Japan 2025 Recap
donkomura
0
160
Rubyの国のPerlMonger
anatofuz
3
730
Lambda management with ecspresso and Terraform
ijin
2
120
LLMでAI-OCR、実際どうなの? / llm_ai_ocr_layerx_bet_ai_day_lt
sbrf248
0
430
【CEDEC2025】『Shadowverse: Worlds Beyond』二度目のDCG開発でゲームをリデザインする~遊びやすさと競技性の両立~
cygames
PRO
1
290
Vision Language Modelと自動運転AIの最前線_20250730
yuyamaguchi
3
1.1k
Featured
See All Featured
Docker and Python
trallard
45
3.5k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Java REST API Framework Comparison - PWX 2021
mraible
32
8.8k
What's in a price? How to price your products and services
michaelherold
246
12k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
4 Signs Your Business is Dying
shpigford
184
22k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
How to Ace a Technical Interview
jacobian
278
23k
Designing for Performance
lara
610
69k
Transcript
ࠓ͔Β࢝ΊΔ Flood.io גࣜձࣾΪϑςΟ ٠ ࢙و ෛՙରࡦ Night #1 @ΪϑςΟ on
2018/02/06
ࣗݾհ about: name: Fumitaka Kikukawa twitter: @kikunantoka job: engineer work_at:
giftee Inc. // giftee is a good company. url: https://kikunantoka.com
ࣗݾհ
ࣗݾհ https://nakamy.com
͍͑ͨ͜ͱ • ΪϑςΟͰͷෛՙରࡦͷॏཁੑ • Flood.io ʹ͍ͭͯ • Flood.io ͷ׆༻ •
30ສRPM Λ͑ΔͨΊʹͬͨ͜ͱ
ΪϑςΟͰͷෛՙରࡦ ͷॏཁੑ
ࣄۀ༰
ࣄۀ༰
ࣄۀ༰
giftee for Buisness
୲͍ͯ͠ΔϓϩμΫτ ʢࣾͰ($1ͱུ͞Εͩ͢ʜʣ HJGUFFΠϯελϯτΟϯGPS5XJUUFSͷڧΈᶃ நબ͔Βܠͷఏڙ·ͰҰؾ௨؏Ͱ͝ఏڙ நબγεςϜ ʢΠϯελϯτΟϯʣ σδλϧΪϑτͷఏڙ ʢछྨҎ্ͷܠʣ ϦΞϧλΠϜʹநબɺ ͦͷͰܠΛ༩
LINEೝূͷύλʔϯఏڙ HJGUFFΠϯελϯτΟϯGPS-*/&ͷڧΈᶃ ©2018 gi)ee Inc. all rights reserved J நબ͔Βܠͷఏڙ·ͰҰؾ௨؏Ͱ͝ఏڙ
நબγεςϜ ʢΠϯελϯτΟϯʣ σδλϧΪϑτͷఏڙ ʢछྨҎ্ͷܠʣ ϦΞϧλΠϜʹநબɺ ͦͷͰܠΛ༩
ΊͬͪΌΞΫηεདྷΔ • ༑ͩͪ 2300ສͷΞΧϯτͰΩϟϯϖʔϯΛ࣮ࢪͨ݁͠Ռ ʊਓਓਓਓਓਓਓਓਓਓਓʊ ʼɹ࠷େ 30ສRPMɹʻ ʉY^Y^Y^Y^Y^Y^Y^Y^ʉ
Flood.io ʹ͍ͭͯ
Flood.io ͱ • ΫϥυϕʔεͷϩʔυςεταʔϏε
Flood.io ͱ • Selenium, JMeter ( + ruby-jmeter) , Gatling
• ͖ͳςετπʔϧΛ͏͜ͱ͕Ͱ͖Δ • طʹGatlingͷςετίʔυ͕͋ͬͨͷͰɺGatlingΛ࠾༻
Flood.io ͱ • Ձ֨ • 50 Node Hours Ͱ 33,000ԁఔʢैྔׂҾ͋Γʣ
Flood.io ͷྑ͍ • Ϋϥυ্Ͱؾܰʹϩʔυςετ͕Ͱ͖Δ • ϊʔυͷεέʔϧΞοϓ͕؆୯ • ݁Ռ͕ϏδϡΞϥΠζ͞ΕΔ • Web্Ͱ݁Ռͱςετέʔεͷཧ͕Ͱ͖Δ
• ςετ݁ՌγΣΞ༻ͷϦϯΫͰڞ༗Ͱ͖Δ
Flood.io ͷѱ͍ • ϩάͷอ༗ظ͕ؒ1ϲ݄ఔ • ςετέʔεͱΤϥʔݪҼͷηοτͰཧ͍ͨ͠߹ʹෆ ศ
σϞ
Flood.io ͷ׆༻
New Relic ͰϘτϧωοΫΛಛఆ • Flood.io ͰෛՙΛ͔͚ͨ࣌ͷ༷ࢠΛϞχλϦϯά͢Δ
ෛՙݕূΛ܁Γฦ͢ • ϩʔυςετΛ͢Δ • ϘτϧωοΫ͕ݟ͔ͭΔ • ϘτϧωοΫΛվળ͢Δ • Λ܁Γฦ͢
ෛՙݕূΛ܁Γฦ͢ • ϩοΫॲཧʹΑͬͯɺλΠϜΞτ • ϩοΫॲཧͷൣғͷվળ • ίωΫγϣϯϓʔϧ͕Γͳ͘ͳΔ • DBͷઃఆͷमਖ਼ •
RDSʹଓͰ͖ͳ͘ͳΔ • ΠϯελϯελΠϓͷมߋ
ϘτϧωοΫʹͳΓ͍͢ϙΠϯτ • σʔλ͕૿͑Δ͜ͱʹΑͬͯੑೳྼԽ͠ͳ͍͔ • εϩʔΫΤϦΛ͍͛ͯͳ͍͔ • ϩοΫॲཧͷൣғ͕͗͢ͳ͍͔ • σουϩοΫ͍ͯ͠ͳ͍͔ •
ແବͳΠϯελϯεΛੜ͍ͯ͠ͳ͍͔ • ੩తϑΝΠϧCDN৴͢Δ
ҙ • AWSࣄલʹϩʔυςετ͢ΔࢫΛ͓͑ͯ͘ • ಉҰIP͔ΒҰఆҎ্ΞΫηε͕͋Δͱ߈ܸͱΈͳ͞ΕΔ • AWS LoftͷαϙʔτΤϯδχΞਃग़ͨ͠΄͏͕ྑ͍ ͱͷݟղ
30ສRPM Λ͑ΔͨΊʹ ͬͨ͜ͱ
εέʔϧΞοϓͰ͖ΔΑ͏ʹ͓ͯ͘͠ • Elastic Beanstalk
εέʔϧΞοϓͰ͖ΔΑ͏ʹ͓ͯ͘͠ • Amazon Aurora • RDS for MySQL͔ΒҠߦͨ͠ • ϑΣΠϧΦʔόʔػೳΛ͏͜ͱͰɺΠϯελϯελΠϓ
ͷมߋ࣌ͷμϯλΠϜ͕5ඵఔʹ • ॻ͖ࠐΈIOPS͔Βͷ։์
DBͷઃఆΛݟ͢ • DB ͷ Pool Puma ͷ Thread ɺWorker
ద͔ • DB ͷ Pool -> Puma ͷεϨου • Puma ͷ Worker -> CPUͷίΞ • Puma ͷ Thread -> CPU༻ͱ૬ஊ
࠷৽ͷΠϯελϯελΠϓΛ͏ ໊લ W$16 3". $16ΫϨδοτ࣌ؒ ྉۚ࣌ؒ UTNBMM
64% UTNBMM 64% • ίεύ͕ྑ͍ • Puma ͷ Worker Λ 2 ʹͰ͖Δ -> 2ഒͷεϨου • ͨͩ͠ɺAWSଆͰϦιʔε͕Γͳ͘ͳΔϦεΫ͕͋Δ
WebαʔόΛཱͯ·͘Ε͍͍͍ͬͯ͏Ͱͳ͍ • db.r4.16xlargeͷ߹ • 32 Threads x 2 Workers •
1͋ͨΓ 64 Threads • 6000 / 64 = 93.75 • 92͙Β͍͕ݶքʂ
ͪΌΜͱਓΛೖΕΔ • 1ਓͩͱӡ༻ਏ͍ • 2ਓ͍Εɺਏ͍͜ͱʹɺتͼ2ഒʹ • ͓ۚΛՔ͙ • Λ্͛Δ
ίϚʔγϟϧ • We are hiring!!! - Ұॹʹಇؒ͘Λืूதʂ ձһສਓಥഁʂ ࠃ/PͷΧδϡΞϧΪϑταʔϏε