Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoreMLで実現する爆速のARサイズ計測
Search
Kohei Arai
September 06, 2019
Technology
1
1.6k
CoreMLで実現する爆速のARサイズ計測
9/6(金)に行われたiOSDC 2019でのLT資料です。
Kohei Arai
September 06, 2019
Tweet
Share
More Decks by Kohei Arai
See All by Kohei Arai
VisionKit_Basics.pdf
kokoheia
0
150
Swift5_Cheet_Sheet.pdf
kokoheia
7
1.2k
Other Decks in Technology
See All in Technology
Taming you application's environments
salaboy
0
180
Incident Response Practices: Waroom's Features and Future Challenges
rrreeeyyy
0
160
AWS Lambda のトラブルシュートをしていて思うこと
kazzpapa3
2
170
スクラム成熟度セルフチェックツールを作って得た学びとその活用法
coincheck_recruit
1
140
第1回 国土交通省 データコンペ参加者向け勉強会③- Snowflake x estie編 -
estie
0
120
The Rise of LLMOps
asei
6
1.3k
TanStack Routerに移行するのかい しないのかい、どっちなんだい! / Are you going to migrate to TanStack Router or not? Which one is it?
kaminashi
0
580
iOS/Androidで同じUI体験をネ イティブで作成する際に気をつ けたい落とし穴
fumiyasac0921
1
110
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
サイバーセキュリティと認知バイアス:対策の隙を埋める心理学的アプローチ
shumei_ito
0
380
ドメインの本質を掴む / Get the essence of the domain
sinsoku
2
150
Terraform未経験の御様に対してどの ように導⼊を進めていったか
tkikuchi
2
430
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
4 Signs Your Business is Dying
shpigford
180
21k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Building Your Own Lightsaber
phodgson
103
6.1k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
410
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
GitHub's CSS Performance
jonrohan
1030
460k
Transcript
iOSDC 2019 CoreMLで実現する 爆速のARサイズ計測 Kohei Arai @kokoheia
Kohei Arai @kokoheia • Mercari / 新卒 iOS Engineer •
Twitter: @kokoheia • Instagram: @kokoheia • ポートレートを撮るのが趣味です • 最近PUBGにハマっています
突然ですが、みなさん こんな経験をしたことは ありませんか?
「フリマアプリで洋服を出品したい!」
特に、洋服の「サイズ」を載せたい (コメントで聞かれた。。)
そうだ、AR Measureで 測ってみよう!
。。。。
。。。結構面倒くさい • そもそも測る場所がわからない • 測り方が合ってるか自信ない • 何枚も出品したいけど時間かけたくない。。
IN THE NEXT FIVE MONTHS ARメジャーの課題 • ARの体験に慣れるのに時間がかかる • 大きいものを測るのが大変
• メジャーを代替しただけなので計測にかか る時間はあまり変わらず Item 1 Item 2 Item 3 Item 4 Item 5 40 30 20 10 0
テクノロジーを使って もっと簡単に測ることは できないか!?
ML(機械学習) ✖AR で 爆速 & 超簡単にサイズ計測する
Demo
None
仕組み 画像を撮影 ML(機械学習)で 画像内の特徴点の座標を 推定 特徴点の座標を元に AR Kitを使って現実世界 のスケールを得る。
MLモデル created by ARヒノボル / @liketableteninu 姿勢推定のモデルを応用 Alibabaのデータセット
2Dの推定 3Dの推定(AR) 仕組み
どれくらい 速くなったのか?
測定した対象 袖丈、肩幅、身幅、着丈の4点 出典: https://minne.com/items/17640623
サイズ計測にかかる時間 自力 ML + AR 40 ~ 50秒 10 ~
15秒
もっと速くしたい!
CoreMLを使って サーバレスで推定
Demo 2: CoreML
None
サイズ計測にかかる時間 自力 AR + ML (サーバー) 40 ~ 50秒 10
~ 15秒 AR + CoreML 5秒未満
MLモデルの生成 Created by ARヒノボル / @liketableteninu
推定の精度 サーバー CoreML 身幅 2cm以内 2cm以内 着丈 5cm以内 5cm以内 袖丈
10cm前後 10cm前後 肩幅 10cm前後 10cm前後 推定しやすい 推定しづらい
• モデル自体を改善する ◦ カテゴリごとの画像の数を増やして学習する • 物体認識の精度をあげる (for CoreML) ◦ 機械学習で物体認識してから、その範囲内で推定すると精度が上がる
精度を改善するために
ML ✖ AR Measureの可能性 • 人間のサイズも測定できる → 服と照らし合わせてフィット度を計測する • 靴やインテリアなど、服以外の商品にも応用が可能
ご清聴ありがとうございました!
おまけ
推定の速度 サーバー(GPU) サーバー(CPU) CoreML 2 ~ 3秒以下 6秒程度 1秒以下
月あたりコスト(一例) サーバー(GPU) サーバー(CPU) CoreML 約68,000円 / 台 約13,000円 / 台
無料 GPUはaws p2.xlarge, CPUはaws c5xlargeを参照。 GPU: 0.9(USD/hr) * 24 hrs * 30 days * 105(JPY/USD) = 68,040JPY CPU: 0.17(USD/hr) * 24 hrs * 30 days * 105(JPY/USD) = 12,852JPY
Pytorchからモデルを変換した理由 • Turi Create や Create MLでモデルを作ることも 検討した • Pythonで書かれた機械学習用のライブラリに比
べるとできる処理も限られていたためPytorchか らの変換を採用
非同期のHit Test処理
非同期のHit Test処理のTips Hit Testには3種類ある • ARSCNView hitTest(_ point: CGPoint, types:
ARHitTestResult.ResultType) -> [ARHitTestResult] • ARSKView hitTest(_ point: CGPoint, types: ARHitTestResult.ResultType) -> [ARHitTestResult] • ARFrame hitTest(_ point: CGPoint, types: ARHitTestResult.ResultType) -> [ARHitTestResult]
非同期のHit Test処理のTips • 画像をサーバに送りレスポンスが帰ってくるのを待たなくては行 けなかった • 今回は画像撮影時のARFrameを保存しておいて、レスポンスが 帰ってきてから、保存済みのARFrameからhitTest処理をするとい う実装をした •
最初、予想した結果とはるかに異なる点がプロットされて戸惑っ た
非同期のHit Test処理のTips ARFrameを使ってhitTestをするときは、結果をinvertしないといけなかった
参考 • https://www.digitaltrends.com/mobile/how-to-use-the-measure-app-in-ios-12/ • https://github.com/matterport/Mask_RCNN • https://github.com/LiMeng95/MultiPoseNet.pytorch • https://tianchi.aliyun.com/mobile/gameDetail/231670 •
https://qiita.com/kamata1729/items/e54bcb7d0ed3d296daf8 • https://aws.amazon.com/jp/emr/pricing/ • https://pytorch.org/ • https://github.com/onnx/onnx • https://github.com/onnx/onnx-coreml • https://developer.apple.com/documentation/arkit/arframe/2875718-hittest