Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"Haute Couture" and "Prêt-à-Porter" Data Science
Search
Christophe Bourguignat
April 15, 2016
Technology
0
470
"Haute Couture" and "Prêt-à-Porter" Data Science
Talk given @ Telecom ParisTech on April 2016
Christophe Bourguignat
April 15, 2016
Tweet
Share
More Decks by Christophe Bourguignat
See All by Christophe Bourguignat
Adding Neurons to your Assistants
kriss
1
360
Software Engineers, the New Data Scientists
kriss
1
140
Machine Learning for Chief Future Officers
kriss
1
140
Whitening The Blackbox : Why And How To Explain Machine Learning Predictions ?
kriss
1
1.2k
Building a Data Science Team
kriss
2
410
Lean Machine Learning
kriss
5
780
Kaggle Criteo Challenge and Online Learning
kriss
1
290
The #FrenchData landscape
kriss
0
490
Other Decks in Technology
See All in Technology
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.3k
7,000万ユーザーの信頼を守る「TimeTree」のオブザーバビリティ実践 ( Datadog Live Tokyo )
bell033
1
100
普段使ってるClaude Skillsの紹介(by Notebooklm)
zerebom
8
2.3k
202512_AIoT.pdf
iotcomjpadmin
0
150
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
0
100
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
420
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
6
1.7k
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
150
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
260
Connection-based OAuthから学ぶOAuth for AI Agents
flatt_security
0
390
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
17
2.8k
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
770
Featured
See All Featured
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
73
Rails Girls Zürich Keynote
gr2m
95
14k
The Spectacular Lies of Maps
axbom
PRO
1
400
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
380
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
31
Code Reviewing Like a Champion
maltzj
527
40k
A Soul's Torment
seathinner
1
2k
[SF Ruby Conf 2025] Rails X
palkan
0
640
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Site-Speed That Sticks
csswizardry
13
1k
The untapped power of vector embeddings
frankvandijk
1
1.5k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5k
Transcript
Christophe Bourguignat zelros.com /
[email protected]
/ @zelrosHQ
None
Agenda Models interpretation Models production A short history of Kaggle
MODELS INTERPRETATION
WHY ? Models opacity is a major reject cause by
users Unfortunately, predictive models that are the most powerful are usually the least interpretable
None
None
None
FEATURE IMPORTANCE
None
None
None
AEROSOLVE (AirBnb) Prior = general belief, before looking at the
data Inform the model of our prior beliefs by adding them to a text configuration file during training
None
None
None
Scikit Learn
Scikit Learn March 2014
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn https://github.com/andosa/treeinterpreter/blob/master/treeinterpreter/treeinterpreter.py
EXEMPLE ON BOSTON DATASET
None
http://blog.datadive.net/prediction-intervals-for-random-forests/ Prediction Intervals for Random Forests
None
None
PRODUCTION
None
None
TRADITIONAL B.I. DEPARTMENT DATA ANALYSTS ETL ENGINEER DBAs
“INFINITE LOOP OF SADNESS” DATA SCIENTISTS IT / DATA ENGINEERS
SOFTWARE ENGINEERS BUSINESS http://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/
CODE http://treycausey.com/software_dev_skills.html
COMPLEXITY AND TECHNICAL DEBT Underutilized features Undeclared consumers Pipeline Jungles
- preparing data in a ML-friendly format http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/43146.pdf
PRODUCTION FAILS Unseen category Unreproductible feat eng workflow (PMML) Leakage
in DataBase fields (churn) Monitoring
A BRIEF HISTORY OF KAGGLE
June 2013 Sept 2013 Nov 2014 Apr 2015 Mar 2016
None
None
None
None
None
None
None
Refinements : - hashing function - adaptive learning rate (different
flavours) - Vowpal Wabbit - Dropout - PyPy
None
None
None
None
None
None
None
None
QUESTIONS ? zelros.com /
[email protected]
/ @zelrosHQ