Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"Haute Couture" and "Prêt-à-Porter" Data Science
Search
Christophe Bourguignat
April 15, 2016
Technology
0
470
"Haute Couture" and "Prêt-à-Porter" Data Science
Talk given @ Telecom ParisTech on April 2016
Christophe Bourguignat
April 15, 2016
Tweet
Share
More Decks by Christophe Bourguignat
See All by Christophe Bourguignat
Adding Neurons to your Assistants
kriss
1
360
Software Engineers, the New Data Scientists
kriss
1
140
Machine Learning for Chief Future Officers
kriss
1
140
Whitening The Blackbox : Why And How To Explain Machine Learning Predictions ?
kriss
1
1.2k
Building a Data Science Team
kriss
2
410
Lean Machine Learning
kriss
5
770
Kaggle Criteo Challenge and Online Learning
kriss
1
290
The #FrenchData landscape
kriss
0
490
Other Decks in Technology
See All in Technology
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
480
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
120
チーリンについて
hirotomotaguchi
6
1.9k
文字列の並び順 / Unicode Collation
tmtms
3
570
Microsoft Agent 365 についてゆっくりじっくり理解する!
skmkzyk
0
300
5分で知るMicrosoft Ignite
taiponrock
PRO
0
350
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
210
エンジニアとPMのドメイン知識の溝をなくす、 AIネイティブな開発プロセス
applism118
4
1.2k
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
1.4k
日本Rubyの会の構造と実行とあと何か / hokurikurk01
takahashim
4
1.1k
AIプラットフォームにおけるMLflowの利用について
lycorptech_jp
PRO
1
130
Reinforcement Fine-tuning 基礎〜実践まで
ch6noota
0
180
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
It's Worth the Effort
3n
187
29k
Bash Introduction
62gerente
615
210k
GitHub's CSS Performance
jonrohan
1032
470k
Documentation Writing (for coders)
carmenintech
76
5.2k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Visualization
eitanlees
150
16k
Why Our Code Smells
bkeepers
PRO
340
57k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
Christophe Bourguignat zelros.com /
[email protected]
/ @zelrosHQ
None
Agenda Models interpretation Models production A short history of Kaggle
MODELS INTERPRETATION
WHY ? Models opacity is a major reject cause by
users Unfortunately, predictive models that are the most powerful are usually the least interpretable
None
None
None
FEATURE IMPORTANCE
None
None
None
AEROSOLVE (AirBnb) Prior = general belief, before looking at the
data Inform the model of our prior beliefs by adding them to a text configuration file during training
None
None
None
Scikit Learn
Scikit Learn March 2014
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn https://github.com/andosa/treeinterpreter/blob/master/treeinterpreter/treeinterpreter.py
EXEMPLE ON BOSTON DATASET
None
http://blog.datadive.net/prediction-intervals-for-random-forests/ Prediction Intervals for Random Forests
None
None
PRODUCTION
None
None
TRADITIONAL B.I. DEPARTMENT DATA ANALYSTS ETL ENGINEER DBAs
“INFINITE LOOP OF SADNESS” DATA SCIENTISTS IT / DATA ENGINEERS
SOFTWARE ENGINEERS BUSINESS http://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/
CODE http://treycausey.com/software_dev_skills.html
COMPLEXITY AND TECHNICAL DEBT Underutilized features Undeclared consumers Pipeline Jungles
- preparing data in a ML-friendly format http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/43146.pdf
PRODUCTION FAILS Unseen category Unreproductible feat eng workflow (PMML) Leakage
in DataBase fields (churn) Monitoring
A BRIEF HISTORY OF KAGGLE
June 2013 Sept 2013 Nov 2014 Apr 2015 Mar 2016
None
None
None
None
None
None
None
Refinements : - hashing function - adaptive learning rate (different
flavours) - Vowpal Wabbit - Dropout - PyPy
None
None
None
None
None
None
None
None
QUESTIONS ? zelros.com /
[email protected]
/ @zelrosHQ