Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"Haute Couture" and "Prêt-à-Porter" Data Science
Search
Christophe Bourguignat
April 15, 2016
Technology
0
470
"Haute Couture" and "Prêt-à-Porter" Data Science
Talk given @ Telecom ParisTech on April 2016
Christophe Bourguignat
April 15, 2016
Tweet
Share
More Decks by Christophe Bourguignat
See All by Christophe Bourguignat
Adding Neurons to your Assistants
kriss
1
360
Software Engineers, the New Data Scientists
kriss
1
140
Machine Learning for Chief Future Officers
kriss
1
140
Whitening The Blackbox : Why And How To Explain Machine Learning Predictions ?
kriss
1
1.2k
Building a Data Science Team
kriss
2
410
Lean Machine Learning
kriss
5
770
Kaggle Criteo Challenge and Online Learning
kriss
1
290
The #FrenchData landscape
kriss
0
490
Other Decks in Technology
See All in Technology
重厚長大企業で、顧客価値をスケールさせるためのプロダクトづくりとプロダクト開発チームづくりの裏側 / Developers X Summit 2025
mongolyy
0
190
adk-samples に学ぶデータ分析 LLM エージェント開発
na0
3
570
Pandocでmd→pptx便利すぎワロタwww
meow_noisy
2
920
『星の世界の地図の話: Google Sky MapをAI Agentでよみがえらせる』 - Google Developers DevFest Tokyo 2025
taniiicom
0
320
TypeScript 6.0で非推奨化されるオプションたち
uhyo
15
5k
AI × クラウドで シイタケの収穫時期を判定してみた
lamaglama39
1
390
新しい風。SolidFlutterで実現するシンプルな状態管理
zozotech
PRO
0
140
AWS Media Services 最新サービスアップデート 2025
eijikominami
0
110
入社したばかりでもできる、 アクセシビリティ改善の第一歩
unachang113
2
350
今すぐGoogle Antigravityを触りましょう
rfdnxbro
0
160
SRE視点で振り返るメルカリのアーキテクチャ変遷と普遍的な考え
foostan
2
1.1k
Datadog LLM Observabilityで実現するLLMOps実践事例 / practical-llm-observability-with-datadog
k6s4i53rx
0
130
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
The Language of Interfaces
destraynor
162
25k
Speed Design
sergeychernyshev
33
1.2k
The Pragmatic Product Professional
lauravandoore
36
7k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Six Lessons from altMBA
skipperchong
29
4.1k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
680
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Unsuck your backbone
ammeep
671
58k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.1k
Transcript
Christophe Bourguignat zelros.com /
[email protected]
/ @zelrosHQ
None
Agenda Models interpretation Models production A short history of Kaggle
MODELS INTERPRETATION
WHY ? Models opacity is a major reject cause by
users Unfortunately, predictive models that are the most powerful are usually the least interpretable
None
None
None
FEATURE IMPORTANCE
None
None
None
AEROSOLVE (AirBnb) Prior = general belief, before looking at the
data Inform the model of our prior beliefs by adding them to a text configuration file during training
None
None
None
Scikit Learn
Scikit Learn March 2014
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn https://github.com/andosa/treeinterpreter/blob/master/treeinterpreter/treeinterpreter.py
EXEMPLE ON BOSTON DATASET
None
http://blog.datadive.net/prediction-intervals-for-random-forests/ Prediction Intervals for Random Forests
None
None
PRODUCTION
None
None
TRADITIONAL B.I. DEPARTMENT DATA ANALYSTS ETL ENGINEER DBAs
“INFINITE LOOP OF SADNESS” DATA SCIENTISTS IT / DATA ENGINEERS
SOFTWARE ENGINEERS BUSINESS http://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/
CODE http://treycausey.com/software_dev_skills.html
COMPLEXITY AND TECHNICAL DEBT Underutilized features Undeclared consumers Pipeline Jungles
- preparing data in a ML-friendly format http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/43146.pdf
PRODUCTION FAILS Unseen category Unreproductible feat eng workflow (PMML) Leakage
in DataBase fields (churn) Monitoring
A BRIEF HISTORY OF KAGGLE
June 2013 Sept 2013 Nov 2014 Apr 2015 Mar 2016
None
None
None
None
None
None
None
Refinements : - hashing function - adaptive learning rate (different
flavours) - Vowpal Wabbit - Dropout - PyPy
None
None
None
None
None
None
None
None
QUESTIONS ? zelros.com /
[email protected]
/ @zelrosHQ