Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"Haute Couture" and "Prêt-à-Porter" Data Science
Search
Christophe Bourguignat
April 15, 2016
Technology
0
470
"Haute Couture" and "Prêt-à-Porter" Data Science
Talk given @ Telecom ParisTech on April 2016
Christophe Bourguignat
April 15, 2016
Tweet
Share
More Decks by Christophe Bourguignat
See All by Christophe Bourguignat
Adding Neurons to your Assistants
kriss
1
360
Software Engineers, the New Data Scientists
kriss
1
140
Machine Learning for Chief Future Officers
kriss
1
140
Whitening The Blackbox : Why And How To Explain Machine Learning Predictions ?
kriss
1
1.2k
Building a Data Science Team
kriss
2
410
Lean Machine Learning
kriss
5
770
Kaggle Criteo Challenge and Online Learning
kriss
1
290
The #FrenchData landscape
kriss
0
490
Other Decks in Technology
See All in Technology
GCASアップデート(202508-202510)
techniczna
0
110
251029 JAWS-UG AI/ML 退屈なことはQDevにやらせよう
otakensh
0
110
アノテーション作業書作成のGood Practice
cierpa0905
PRO
1
320
20251029_Cursor Meetup Tokyo #02_MK_「あなたのAI、私のシェル」 - プロンプトインジェクションによるエージェントのハイジャック
mk0721
PRO
6
2k
JSConf JPのwebsiteをGatsbyからNext.jsに移行した話 - Next.jsの多言語静的サイトと課題
leko
2
200
webpack依存からの脱却!快適フロントエンド開発をViteで実現する #vuefes
bengo4com
4
3.8k
AIエージェントによる業務効率化への飽くなき挑戦-AWS上の実開発事例から学んだ効果、現実そしてギャップ-
nasuvitz
5
1.5k
JAWS UG AI/ML #32 Amazon BedrockモデルのライフサイクルとEOL対応/How Amazon Bedrock Model Lifecycle Works
quiver
1
130
AI機能プロジェクト炎上の 3つのしくじりと学び
nakawai
0
160
AWS DMS で SQL Server を移行してみた/aws-dms-sql-server-migration
emiki
0
260
IBC 2025 動画技術関連レポート / IBC 2025 Report
cyberagentdevelopers
PRO
2
220
ゼロコード計装導入後のカスタム計装でさらに可観測性を高めよう
sansantech
PRO
1
570
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Producing Creativity
orderedlist
PRO
348
40k
Designing Experiences People Love
moore
142
24k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
Writing Fast Ruby
sferik
630
62k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Visualization
eitanlees
150
16k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
190
55k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Transcript
Christophe Bourguignat zelros.com /
[email protected]
/ @zelrosHQ
None
Agenda Models interpretation Models production A short history of Kaggle
MODELS INTERPRETATION
WHY ? Models opacity is a major reject cause by
users Unfortunately, predictive models that are the most powerful are usually the least interpretable
None
None
None
FEATURE IMPORTANCE
None
None
None
AEROSOLVE (AirBnb) Prior = general belief, before looking at the
data Inform the model of our prior beliefs by adding them to a text configuration file during training
None
None
None
Scikit Learn
Scikit Learn March 2014
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn https://github.com/andosa/treeinterpreter/blob/master/treeinterpreter/treeinterpreter.py
EXEMPLE ON BOSTON DATASET
None
http://blog.datadive.net/prediction-intervals-for-random-forests/ Prediction Intervals for Random Forests
None
None
PRODUCTION
None
None
TRADITIONAL B.I. DEPARTMENT DATA ANALYSTS ETL ENGINEER DBAs
“INFINITE LOOP OF SADNESS” DATA SCIENTISTS IT / DATA ENGINEERS
SOFTWARE ENGINEERS BUSINESS http://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/
CODE http://treycausey.com/software_dev_skills.html
COMPLEXITY AND TECHNICAL DEBT Underutilized features Undeclared consumers Pipeline Jungles
- preparing data in a ML-friendly format http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/43146.pdf
PRODUCTION FAILS Unseen category Unreproductible feat eng workflow (PMML) Leakage
in DataBase fields (churn) Monitoring
A BRIEF HISTORY OF KAGGLE
June 2013 Sept 2013 Nov 2014 Apr 2015 Mar 2016
None
None
None
None
None
None
None
Refinements : - hashing function - adaptive learning rate (different
flavours) - Vowpal Wabbit - Dropout - PyPy
None
None
None
None
None
None
None
None
QUESTIONS ? zelros.com /
[email protected]
/ @zelrosHQ