Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"Haute Couture" and "Prêt-à-Porter" Data Science
Search
Christophe Bourguignat
April 15, 2016
Technology
0
460
"Haute Couture" and "Prêt-à-Porter" Data Science
Talk given @ Telecom ParisTech on April 2016
Christophe Bourguignat
April 15, 2016
Tweet
Share
More Decks by Christophe Bourguignat
See All by Christophe Bourguignat
Adding Neurons to your Assistants
kriss
1
360
Software Engineers, the New Data Scientists
kriss
1
140
Machine Learning for Chief Future Officers
kriss
1
130
Whitening The Blackbox : Why And How To Explain Machine Learning Predictions ?
kriss
1
1.2k
Building a Data Science Team
kriss
2
410
Lean Machine Learning
kriss
5
770
Kaggle Criteo Challenge and Online Learning
kriss
1
270
The #FrenchData landscape
kriss
0
490
Other Decks in Technology
See All in Technology
マネジメントって難しい、けどおもしろい / Management is tough, but fun! #em_findy
ar_tama
7
1.2k
American airlines ®️ USA Contact Numbers: Complete 2025 Support Guide
airhelpsupport
0
390
【LT会登壇資料】TROCCO新コネクタ「スマレジ」を活用した直営店データの分析
kazari0425
1
110
Lufthansa ®️ USA Contact Numbers: Complete 2025 Support Guide
lufthanahelpsupport
0
220
AIの全社活用を推進するための安全なレールを敷いた話
shoheimitani
2
550
20250707-AI活用の個人差を埋めるチームづくり
shnjtk
6
4k
対話型音声AIアプリケーションの信頼性向上の取り組み
ivry_presentationmaterials
1
290
事例で学ぶ!B2B SaaSにおけるSREの実践例/SRE for B2B SaaS: A Real-World Case Study
bitkey
0
110
freeeのアクセシビリティの現在地 / freee's Current Position on Accessibility
ymrl
2
230
第4回Snowflake 金融ユーザー会 Snowflake summit recap
tamaoki
1
300
関数型プログラミングで 「脳がバグる」を乗り越える
manabeai
2
200
Claude Code に プロジェクト管理やらせたみた
unson
6
4.5k
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
How STYLIGHT went responsive
nonsquared
100
5.6k
BBQ
matthewcrist
89
9.7k
We Have a Design System, Now What?
morganepeng
53
7.7k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Visualization
eitanlees
146
16k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Side Projects
sachag
455
42k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
Bash Introduction
62gerente
613
210k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Transcript
Christophe Bourguignat zelros.com /
[email protected]
/ @zelrosHQ
None
Agenda Models interpretation Models production A short history of Kaggle
MODELS INTERPRETATION
WHY ? Models opacity is a major reject cause by
users Unfortunately, predictive models that are the most powerful are usually the least interpretable
None
None
None
FEATURE IMPORTANCE
None
None
None
AEROSOLVE (AirBnb) Prior = general belief, before looking at the
data Inform the model of our prior beliefs by adding them to a text configuration file during training
None
None
None
Scikit Learn
Scikit Learn March 2014
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn https://github.com/andosa/treeinterpreter/blob/master/treeinterpreter/treeinterpreter.py
EXEMPLE ON BOSTON DATASET
None
http://blog.datadive.net/prediction-intervals-for-random-forests/ Prediction Intervals for Random Forests
None
None
PRODUCTION
None
None
TRADITIONAL B.I. DEPARTMENT DATA ANALYSTS ETL ENGINEER DBAs
“INFINITE LOOP OF SADNESS” DATA SCIENTISTS IT / DATA ENGINEERS
SOFTWARE ENGINEERS BUSINESS http://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/
CODE http://treycausey.com/software_dev_skills.html
COMPLEXITY AND TECHNICAL DEBT Underutilized features Undeclared consumers Pipeline Jungles
- preparing data in a ML-friendly format http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/43146.pdf
PRODUCTION FAILS Unseen category Unreproductible feat eng workflow (PMML) Leakage
in DataBase fields (churn) Monitoring
A BRIEF HISTORY OF KAGGLE
June 2013 Sept 2013 Nov 2014 Apr 2015 Mar 2016
None
None
None
None
None
None
None
Refinements : - hashing function - adaptive learning rate (different
flavours) - Vowpal Wabbit - Dropout - PyPy
None
None
None
None
None
None
None
None
QUESTIONS ? zelros.com /
[email protected]
/ @zelrosHQ