Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"Haute Couture" and "Prêt-à-Porter" Data Science
Search
Christophe Bourguignat
April 15, 2016
Technology
0
460
"Haute Couture" and "Prêt-à-Porter" Data Science
Talk given @ Telecom ParisTech on April 2016
Christophe Bourguignat
April 15, 2016
Tweet
Share
More Decks by Christophe Bourguignat
See All by Christophe Bourguignat
Adding Neurons to your Assistants
kriss
1
360
Software Engineers, the New Data Scientists
kriss
1
140
Machine Learning for Chief Future Officers
kriss
1
130
Whitening The Blackbox : Why And How To Explain Machine Learning Predictions ?
kriss
1
1.2k
Building a Data Science Team
kriss
2
410
Lean Machine Learning
kriss
5
770
Kaggle Criteo Challenge and Online Learning
kriss
1
280
The #FrenchData landscape
kriss
0
490
Other Decks in Technology
See All in Technology
Claude CodeでKiroの仕様駆動開発を実現させるには...
gotalab555
3
1.1k
Instant Apps Eulogy
cyrilmottier
1
120
JAWS-UG のイベントで使うハンズオンシナリオを Amazon Q Developer for CLI で作ってみた話
kazzpapa3
0
110
[OCI Technical Deep Dive] OCIで生成AIを活用するためのソリューション解説(2025年8月5日開催)
oracle4engineer
PRO
0
110
Engineering Failure-Resilient Systems
infraplumber0
0
120
LLMで構造化出力の成功率をグンと上げる方法
keisuketakiguchi
0
970
UDDのススメ - 拡張版 -
maguroalternative
1
590
家族の思い出を形にする 〜 1秒動画の生成を支えるインフラアーキテクチャ
ojima_h
3
1.3k
LLM 機能を支える Langfuse / ClickHouse のサーバレス化
yuu26
9
2.5k
Telemetry APIから学ぶGoogle Cloud ObservabilityとOpenTelemetryの現在 / getting-started-telemetry-api-with-google-cloud
k6s4i53rx
0
160
Claude Codeから我々が学ぶべきこと
oikon48
10
2.8k
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
150
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
512
110k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
GitHub's CSS Performance
jonrohan
1031
460k
A designer walks into a library…
pauljervisheath
207
24k
Scaling GitHub
holman
462
140k
Side Projects
sachag
455
43k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
Navigating Team Friction
lara
188
15k
A Tale of Four Properties
chriscoyier
160
23k
What's in a price? How to price your products and services
michaelherold
246
12k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
880
Transcript
Christophe Bourguignat zelros.com /
[email protected]
/ @zelrosHQ
None
Agenda Models interpretation Models production A short history of Kaggle
MODELS INTERPRETATION
WHY ? Models opacity is a major reject cause by
users Unfortunately, predictive models that are the most powerful are usually the least interpretable
None
None
None
FEATURE IMPORTANCE
None
None
None
AEROSOLVE (AirBnb) Prior = general belief, before looking at the
data Inform the model of our prior beliefs by adding them to a text configuration file during training
None
None
None
Scikit Learn
Scikit Learn March 2014
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn https://github.com/andosa/treeinterpreter/blob/master/treeinterpreter/treeinterpreter.py
EXEMPLE ON BOSTON DATASET
None
http://blog.datadive.net/prediction-intervals-for-random-forests/ Prediction Intervals for Random Forests
None
None
PRODUCTION
None
None
TRADITIONAL B.I. DEPARTMENT DATA ANALYSTS ETL ENGINEER DBAs
“INFINITE LOOP OF SADNESS” DATA SCIENTISTS IT / DATA ENGINEERS
SOFTWARE ENGINEERS BUSINESS http://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/
CODE http://treycausey.com/software_dev_skills.html
COMPLEXITY AND TECHNICAL DEBT Underutilized features Undeclared consumers Pipeline Jungles
- preparing data in a ML-friendly format http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/43146.pdf
PRODUCTION FAILS Unseen category Unreproductible feat eng workflow (PMML) Leakage
in DataBase fields (churn) Monitoring
A BRIEF HISTORY OF KAGGLE
June 2013 Sept 2013 Nov 2014 Apr 2015 Mar 2016
None
None
None
None
None
None
None
Refinements : - hashing function - adaptive learning rate (different
flavours) - Vowpal Wabbit - Dropout - PyPy
None
None
None
None
None
None
None
None
QUESTIONS ? zelros.com /
[email protected]
/ @zelrosHQ