Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"Haute Couture" and "Prêt-à-Porter" Data Science
Search
Christophe Bourguignat
April 15, 2016
Technology
0
440
"Haute Couture" and "Prêt-à-Porter" Data Science
Talk given @ Telecom ParisTech on April 2016
Christophe Bourguignat
April 15, 2016
Tweet
Share
More Decks by Christophe Bourguignat
See All by Christophe Bourguignat
Adding Neurons to your Assistants
kriss
1
350
Software Engineers, the New Data Scientists
kriss
1
140
Machine Learning for Chief Future Officers
kriss
1
130
Whitening The Blackbox : Why And How To Explain Machine Learning Predictions ?
kriss
1
1.1k
Building a Data Science Team
kriss
2
400
Lean Machine Learning
kriss
5
750
Kaggle Criteo Challenge and Online Learning
kriss
1
260
The #FrenchData landscape
kriss
0
470
Other Decks in Technology
See All in Technology
RSNA2024振り返り
nanachi
0
590
表現を育てる
kiyou77
1
220
トラシューアニマルになろう ~開発者だからこそできる、安定したサービス作りの秘訣~
jacopen
2
2k
N=1から解き明かすAWS ソリューションアーキテクトの魅力
kiiwami
0
130
Active Directory攻防
cryptopeg
PRO
2
900
深層学習と古典的画像アルゴリズムを組み合わせた類似画像検索内製化
shutotakahashi
0
120
Windows の新しい管理者保護モード
murachiakira
0
110
ソフトウェアエンジニアと仕事するときに知っておいたほうが良いこと / Key points for working with software engineers
pinkumohikan
0
110
The Future of SEO: The Impact of AI on Search
badams
0
220
Moved to https://speakerdeck.com/toshihue/presales-engineer-career-bridging-tech-biz-ja
toshihue
2
760
Oracle Cloud Infrastructure:2025年2月度サービス・アップデート
oracle4engineer
PRO
1
240
スタートアップ1人目QAエンジニアが QAチームを立ち上げ、“個”からチーム、 そして“組織”に成長するまで / How to set up QA team at reiwatravel
mii3king
2
1.5k
Featured
See All Featured
Gamification - CAS2011
davidbonilla
80
5.1k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
How STYLIGHT went responsive
nonsquared
98
5.4k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
550
Statistics for Hackers
jakevdp
797
220k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.5k
Producing Creativity
orderedlist
PRO
344
39k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
What's in a price? How to price your products and services
michaelherold
244
12k
Transcript
Christophe Bourguignat zelros.com /
[email protected]
/ @zelrosHQ
None
Agenda Models interpretation Models production A short history of Kaggle
MODELS INTERPRETATION
WHY ? Models opacity is a major reject cause by
users Unfortunately, predictive models that are the most powerful are usually the least interpretable
None
None
None
FEATURE IMPORTANCE
None
None
None
AEROSOLVE (AirBnb) Prior = general belief, before looking at the
data Inform the model of our prior beliefs by adding them to a text configuration file during training
None
None
None
Scikit Learn
Scikit Learn March 2014
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn https://github.com/andosa/treeinterpreter/blob/master/treeinterpreter/treeinterpreter.py
EXEMPLE ON BOSTON DATASET
None
http://blog.datadive.net/prediction-intervals-for-random-forests/ Prediction Intervals for Random Forests
None
None
PRODUCTION
None
None
TRADITIONAL B.I. DEPARTMENT DATA ANALYSTS ETL ENGINEER DBAs
“INFINITE LOOP OF SADNESS” DATA SCIENTISTS IT / DATA ENGINEERS
SOFTWARE ENGINEERS BUSINESS http://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/
CODE http://treycausey.com/software_dev_skills.html
COMPLEXITY AND TECHNICAL DEBT Underutilized features Undeclared consumers Pipeline Jungles
- preparing data in a ML-friendly format http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/43146.pdf
PRODUCTION FAILS Unseen category Unreproductible feat eng workflow (PMML) Leakage
in DataBase fields (churn) Monitoring
A BRIEF HISTORY OF KAGGLE
June 2013 Sept 2013 Nov 2014 Apr 2015 Mar 2016
None
None
None
None
None
None
None
Refinements : - hashing function - adaptive learning rate (different
flavours) - Vowpal Wabbit - Dropout - PyPy
None
None
None
None
None
None
None
None
QUESTIONS ? zelros.com /
[email protected]
/ @zelrosHQ