Invited colloquium talk at Macquarie University, Centre for Language Sciences/Linguistics. Sydney, Australia
A strategy for characterizing the learning problem
Characterizing tonal maps
The learnability of tones from the speech signal
Kristine M. Yu
Department of Linguistics
University of Maryland College Park
University of Massachusetts Amherst
Macquarie University
November 30, 2011
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 1
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Overview
1 What is the target of learning in learning phonological
categories?
2 What are inductive biases for learning phonological
categories?
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 2
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Overview
1 What is the target of learning in learning phonological
categories?
2 What are inductive biases for learning phonological
categories?
Model system: lexical tones in tonal languages
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 2
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Overview
1 What is the target of learning in learning phonological
categories?
2 What are inductive biases for learning phonological
categories?
Model system: lexical tones in tonal languages
Methods:
0 Theoretical inquiry
1 Cross linguistic fieldwork
2 Psychological experiments
3 Computational modeling
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 2
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Phonological categories must be learned
. . .categories, defined as relations between a discrete level
and a parametric phonetic level, cannot be universal. That
is, the picture of human phonetic resources as pegs in an
IPA-like phonetic pegboard cannot be sustained. (Pierrehumbert
2003: 127)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 3
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Phonological categories must be learned
. . .categories, defined as relations between a discrete level
and a parametric phonetic level, cannot be universal. That
is, the picture of human phonetic resources as pegs in an
IPA-like phonetic pegboard cannot be sustained. (Pierrehumbert
2003: 127)
The “same” categories have different phonetic realizations in different
languages (Cho and Ladefoged 1999, i.a.)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 3
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Phonological categories must be learned
. . .categories, defined as relations between a discrete level
and a parametric phonetic level, cannot be universal. That
is, the picture of human phonetic resources as pegs in an
IPA-like phonetic pegboard cannot be sustained. (Pierrehumbert
2003: 127)
Infants begin as “universal citizens” in being able to discriminate
(almost) any speech sound contrast but develop language-specific
sensitivity to contrasts in the first year of life (tones: Mattock et al.
2008)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 3
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
The target of learning: what are tones?
What does it mean to learn the lexical tones in a tonal lan-
guage, e.g. in Mandarin?
(Xu 1997)
Tone 1 (high level):
Ă
£ma (55) ‘mother’
Tone 2 (rise):
Ę£ma (35) ‘hemp’
Tone 3 (fall-rise):
ŁŘ£ma (214) ‘horse’
Tone 4 (fall):
Ď£ma (51) ‘scold’
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 4
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Interlude: A vowel map in 2-D formant space
Figure: Peterson and Barney (1952): An
English vowel map in F1SS
, F2SS
space
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Interlude: A vowel map in 2-D formant space
Figure: Peterson and Barney (1952): An
English vowel map in F1SS
, F2SS
space
F1SS , F2SS Vowel
240, 2280 {/i/}
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Interlude: A vowel map in 2-D formant space
Figure: Peterson and Barney (1952): An
English vowel map in F1SS
, F2SS
space
F1SS , F2SS Vowel
240, 2280 {/i/}
460, 1330 {/Ç/}
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Interlude: A vowel map in 2-D formant space
Figure: Peterson and Barney (1952): An
English vowel map in F1SS
, F2SS
space
F1SS , F2SS Vowel
240, 2280 {/i/}
460, 1330 {/Ç/}
475, 1220 {/U/}
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Interlude: A vowel map in 2-D formant space
Figure: Peterson and Barney (1952): An
English vowel map in F1SS
, F2SS
space
F1SS , F2SS Vowel
240, 2280 {/i/}
460, 1330 {/Ç/}
475, 1220 {/U/}
686, 1028 {/A, O/}
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Interlude: A vowel map in 2-D formant space
Figure: Peterson and Barney (1952): An
English vowel map in F1SS
, F2SS
space
F1SS , F2SS Vowel
240, 2280 {/i/}
460, 1330 {/Ç/}
475, 1220 {/U/}
686, 1028 {/A, O/}
400, 3500 {/i/}
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Interlude: A vowel map in 2-D formant space
Figure: Peterson and Barney (1952): An
English vowel map in F1SS
, F2SS
space
F1SS , F2SS Vowel
240, 2280 {/i/}
460, 1330 {/Ç/}
475, 1220 {/U/}
686, 1028 {/A, O/}
400, 3500 {/i/}
: :
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
The target of learning: what are tones?
{Data} Learner
−
−
−
−
→
{Phonological maps}
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 6
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
The target of learning: what are tones?
{Phonetic data} Learner
−
−
−
−
→
{Tonal maps}
Restriction for this project: “pure speech” situation—refer only to
acoustic information (methodological abstraction)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 6
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Defining phonological maps
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 7
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Defining phonological maps
Morphosyntactic maps:
{sequences of morphemes} → {sets of meanings}
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 7
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Defining phonological maps
Morphosyntactic maps:
{sequences of morphemes} → {sets of meanings}
Phonological maps:
{sequences of phonetic parameter values} →
{sets of phonological categories}
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 7
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
A vowel map in 2-D formant space
Figure: Peterson and Barney (1952): An
English vowel map in F1SS
, F2SS
space
F1SS , F2SS Vowel
240, 2280 {/i/}
460, 1330 {/Ç/}
475, 1220 {/U/}
686, 1028 {/A, O/}
400, 3500 {/i/}
: :
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 8
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Defining phonological maps
Parallels with morphosyntax
Generalization from finite sample to infinite set in learning
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 9
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Defining phonological maps
Parallels with morphosyntax
Generalization from finite sample to infinite set in learning
Abstraction away from unbounded context to focus on primary
evidence: speech signal
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 9
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Defining phonological maps
Parallels with morphosyntax
Generalization from finite sample to infinite set in learning
Abstraction away from unbounded context to focus on primary
evidence: speech signal
Ambiguity ⇒ probabilistic distribution of phonological
categories over phonetic spaces (Pierrehumbert 2003)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 9
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Defining phonological maps
Parallels with morphosyntax
Generalization from finite sample to infinite set in learning
Abstraction away from unbounded context to focus on primary
evidence: speech signal
Ambiguity ⇒ probabilistic distribution of phonological
categories over phonetic spaces (Pierrehumbert 2003)
F1SS = 686, F2SS = 1028 → {/A, O/}
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 9
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Defining phonological maps
Parallels with morphosyntax
Generalization from finite sample to infinite set in learning
Abstraction away from unbounded context to focus on primary
evidence: speech signal
Ambiguity ⇒ probabilistic distribution of phonological
categories over phonetic spaces (Pierrehumbert 2003)
F1SS = 686, F2SS = 1028 → {p(/A/) = 0.45, p(/O/) = 0.55}
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 9
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Characterizing phonological maps
Key questions:
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 10
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Characterizing phonological maps
Key questions:
1 What kinds of phonological categories are to be represented
in the range of the map? (Here: phonemes, by stipulation)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 10
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Characterizing phonological maps
Key questions:
1 What kinds of phonological categories are to be represented
in the range of the map? (Here: phonemes, by stipulation)
2 What is the phonetic parameter space—the space of
phonetic parameters—for the phonological categories?
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 10
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Characterizing phonological maps
Key questions:
1 What kinds of phonological categories are to be represented
in the range of the map? (Here: phonemes, by stipulation)
2 What is the phonetic parameter space—the space of
phonetic parameters—for the phonological categories?
3 What are properties of the distribution of the phonological
categories over the phonetic parameter space?
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 10
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Methodological abstraction: which parameters?
Reality: Probabilistic distribution of phonological categories
over phonetic spaces
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 11
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Methodological abstraction: which parameters?
Reality: Probabilistic distribution of phonological categories
over phonetic spaces
Model: partition of set of phonological categories over
phonetic spaces
Tonal identification (humans), hard classification algorithms
(machines)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 11
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Methodological abstraction: which parameters?
Reality: Probabilistic distribution of phonological categories
over phonetic spaces
Model: partition of set of phonological categories over
phonetic spaces
Tonal identification (humans), hard classification algorithms
(machines)
Example: A two tone tonal inventory, e.g. {H, L}
Duda, Hart and Stork (2001)
Probability distribution p(x|ω) over x,
x = mean fundamental frequency (f0)
Two classes: ω1
= L, ω2
= H
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 11
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Language input begins in the womb
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 12
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Language input begins in the womb
Mic introduced at beginning of labor, after amniotic sac rupture
Audio file courtesy of Christine Moon, recorded by Denis Querleu, see methods in
Querleu et al. (1988).
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 12
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Language input begins in the womb
Pitch information is available in the womb.
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 12
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
2-D tonal spaces: f0init
, f0fin
Figure: Cantonese citation tones in f0init
, f0fin
space
(Barry and Blamey 2004)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 13
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
2-D tonal spaces: f0init
, f0fin
Figure: Cantonese citation tones in f0init
, f0fin
space
(Barry and Blamey 2004)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 13
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Can we characterize tonal maps as being feasibly learnable?
Figure: Map in a 2-D parameter space
In phonetic space: each
parameter defines a dimension
and can take a real value
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 14
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Can we characterize tonal maps as being feasibly learnable?
Figure: Map in a 3-D parameter space
In phonetic space: each
parameter defines a dimension
and can take a real value
Potentially an infinite number
of parameters, each with a
potentially infinite range of
possible values
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 14
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Phonological maps are non recursively-enumerable
Phonological maps are defined over real-valued parameters
Reg CF
Fin non!RE
RE
CS
MG
Figure: The Chomsky hierarchy of formal languages
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 15
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Structure permits feasible learning even in infinite spaces
But comfort from the finiteness of the space of
possible grammars is tenuous indeed. For a
grammatical theory with an infinite number of possible
grammars might be well structured, permitting informed
search that converges quickly to the correct
grammar—even though uninformed, exhaustive search is
infeasible. And it is of little value that exhaustive search is
guaranteed to terminate eventually when the space of
possible grammars is finite, if the number of grammars is
astronomical. In fact, a well-structured theory
admitting an infinity of grammars could well be
feasibly learnable, while a poorly structured theory
admitting a finite, but very large, number of possible
grammars might not.
(Tesar and Smolensky 2000: 3)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 16
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Structure permits feasible learning even in infinite spaces
This talk: don’t panic!
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 16
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Can we characterize tonal maps as being feasibly learnable?
Figure: Map in a 3-D parameter space
In phonetic space: each
parameter defines a dimension
and can take a real value
Potentially an infinite number
of parameters, each with a
potentially infinite range of
possible values
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 17
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Can we characterize tonal maps as being feasibly learnable?
Figure: Scary map in a 2-D parameter space
(Miller 1989)
In phonetic space: each
parameter defines a dimension
and can take a real value
Potentially an infinite number
of parameters, each with a
potentially infinite range of
possible values
Complex shapes/distributions
can make maps in even 2-D
spaces not feasibly learnable
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 17
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Can we characterize tonal maps as being feasibly learnable?
Figure: Scary map in a 2-D parameter space
(Miller 1989)
In phonetic space: each
parameter defines a dimension
and can take a real value
Potentially an infinite number
of parameters, each with a
potentially infinite range of
possible values
Complex shapes/distributions
can make maps in even 2-D
spaces not feasibly learnable
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 17
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Can we characterize tonal maps as being feasibly learnable?
Figure: Scary map in a 2-D parameter space
(Miller 1989)
In phonetic space: each
parameter defines a dimension
and can take a real value
Potentially an infinite number
of parameters, each with a
potentially infinite range of
possible values
Complex shapes/distributions
can make maps in even 2-D
spaces not feasibly learnable
⇒ there must exist inductive
biases to constrain the
hypothesis space
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 17
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Inductive biases for learning phonological categories
The modeler (and learner?) must start with a finite set of
parameters for parameterizing the speech signal
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 18
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Inductive biases for learning phonological categories
The modeler (and learner?) must start with a finite set of
parameters for parameterizing the speech signal
Any results on learning and observations about
shapes/distributions are conditioned on that
parameterization
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 18
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Inductive biases for learning phonological categories
The modeler (and learner?) must start with a finite set of
parameters for parameterizing the speech signal
Any results on learning and observations about
shapes/distributions are conditioned on that
parameterization
How to decide on parameters?
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 18
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Inductive biases for learning phonological categories
The modeler (and learner?) must start with a finite set of
parameters for parameterizing the speech signal
Any results on learning and observations about
shapes/distributions are conditioned on that
parameterization
How to decide on parameters?
A lower bound: parameters that yield well-separated tonal
categories in acoustic and perceptual spaces in any tonal
language
⇒ Need for cross-linguistic language sample
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 18
A strategy for characterizing the learning problem
Characterizing tonal maps
Defining tonal maps
The learnability of tonal maps
Inductive biases for learning phonological categories
The modeler (and learner?) must start with a finite set of
parameters for parameterizing the speech signal
Any results on learning and observations about
shapes/distributions are conditioned on that
parameterization
How to decide on parameters?
A lower bound: parameters that yield well-separated tonal
categories in acoustic and perceptual spaces in any tonal
language
⇒ Need for cross-linguistic language sample
Can only guess based on computational modeling (category
separability) and psychological experimentation (human
perception)
⇒ Need for interplay of computational modeling and
psychological experimentation
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 18
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Cross-linguistic tonal language sample
Language Area Tonal inventory
Bole Nigeria
Ă
£, Ă£ (H,L)
Mandarin Beijing
Ă
£, Ę£, ŁŘ£, Ď£
Cantonese Hong Kong
Ă
£,
Ă
£, Ă£, Ą£, Ę£, Ę£
Hmong Laos/Thailand
Ă
£, Ă£, Ă£, Č£, Ć£, Ą£, Ę£
Languages chosen for diversity in level/contour distinctions
and voice quality contrasts
Multiple speakers (6M/6F for all but Bole (3M/2F))
All legal bitone combinations recorded sentence-medially
Data collection from additional languages always in progress
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 19
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Cross-linguistic tonal language sample
Language Area Tonal inventory
Bole Nigeria
Ă
£, Ă£ (H,L)
Mandarin Beijing
Ă
£, Ę£, ŁŘ£, Ď£
Cantonese Hong Kong
Ă
£,
Ă
£, Ă£, Ą£, Ę£, Ę£
Hmong Laos/Thailand
Ă
£, Ă£, Ă£, Č£, Ć£, Ą£, Ę£
Languages chosen for diversity in level/contour distinctions
and voice quality contrasts
Multiple speakers (6M/6F for all but Bole (3M/2F))
All legal bitone combinations recorded sentence-medially
Data collection from additional languages always in progress
Perception experiments done in Cantonese
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 19
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Inductive biases for learning tonal categories
Is onset and offset f0 sufficient for defining tonal spaces?
1 The role of (phonetic) context
2 A lack of simple f0 universal invariants
3 Voice quality parameters beyond f0
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 20
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Inductive biases for learning tonal categories
Is onset and offset f0 sufficient for defining tonal spaces?
1 The role of (phonetic) context
2 A lack of simple f0 universal invariants
3 Voice quality parameters beyond f0
Structure in the hypothesis space
1 Coarse-grained temporal resolution
2 Initial thoughts on category shapes/distributions
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 20
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
f0 is not a single dimension
. . .tones typically involve a single primary acoustic
dimension, namely, f0. This contrasts with the multiple
acoustic dimensions such as formants or spectral peaks
required for characterizing vowels and consonants. The
variability problem with tones is therefore at least
limited to a single dimension. . .
(Gauthier et al. 2007)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 21
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
f0 is not a single dimension
. . .tones typically involve a single primary acoustic
dimension, namely, f0. This contrasts with the multiple
acoustic dimensions such as formants or spectral peaks
required for characterizing vowels and consonants. The
variability problem with tones is therefore at least
limited to a single dimension. . .
(Gauthier et al. 2007)
Assertion: f0 is a set of acoustic dimensions
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 21
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
f0 is not a single dimension
. . .tones typically involve a single primary acoustic
dimension, namely, f0. This contrasts with the multiple
acoustic dimensions such as formants or spectral peaks
required for characterizing vowels and consonants. The
variability problem with tones is therefore at least
limited to a single dimension. . .
(Gauthier et al. 2007)
Assertion: f0 is a set of acoustic dimensions
Temporal domain: how much context?
Parameterization: f0, f0 velocity, polynomial coefficients, . . .
Temporal resolution: how many samples of a parameter?
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 21
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Temporal domain: how much phonetic context?
Modeling phonological learning: just the associated syllable
Gauthier et al. (2007) for Mandarin tones and all other
phonological learning studies (de Boer and Kuhl 2003, Vallabha
et al. 2007, i.a.)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 22
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Temporal domain: how much phonetic context?
Context beyond syllable
Speech perception: mostly work on effect of preceding context
in vowels (Ladefoged and Broadbent (1980), for level tones
(Wong and Diehl 2003) contour tones (Huang and Holt 2009),
minimal work on following context
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 22
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Temporal domain: how much phonetic context?
Context beyond syllable
Speech perception: mostly work on effect of preceding context
in vowels (Ladefoged and Broadbent (1980), for level tones
(Wong and Diehl 2003) contour tones (Huang and Holt 2009),
minimal work on following context
Peak delay (Silverman & Pierrehumbert 1990, Myers 1999)
suggests role for following context in tonal perception
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 22
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Temporal domain: how much phonetic context?
Context beyond syllable
Speech perception: mostly work on effect of preceding context
in vowels (Ladefoged and Broadbent (1980), for level tones
(Wong and Diehl 2003) contour tones (Huang and Holt 2009),
minimal work on following context
Automatic tonal recognition
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 22
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Temporal domain: how much phonetic context?
Context beyond syllable
Speech perception: mostly work on effect of preceding context
in vowels (Ladefoged and Broadbent (1980), for level tones
(Wong and Diehl 2003) contour tones (Huang and Holt 2009),
minimal work on following context
Automatic tonal recognition
Acoustic parameters from preceding and following syllables:
Qian et al. (2007), Levow (2006), Zhang et al. (2005)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 22
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Temporal domain: how much phonetic context?
Context beyond syllable
Speech perception: mostly work on effect of preceding context
in vowels (Ladefoged and Broadbent (1980), for level tones
(Wong and Diehl 2003) contour tones (Huang and Holt 2009),
minimal work on following context
Automatic tonal recognition
Acoustic parameters from preceding and following syllables:
Qian et al. (2007), Levow (2006), Zhang et al. (2005)
Hypothesis: Following context can be important for good tonal
category separability.
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 22
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Human perception experiments: stimuli
Cantonese tritones: nonce 3-syllable phrases built from syllables
in the lexicon
First and third syllables held fixed:
< waiĂ£, {wai
Ă
£, Ę£,
Ă
£, Ą£, Ę£, Ă£}, matĂ£ >
Tritone Gloss
< waiĂ£, wai
Ă
£, matĂ£ > fear power clean
< waiĂ£, waiĘ£, matĂ£ > fear appoint clean
< waiĂ£, wai
Ă
£, matĂ£ > fear fear clean
< waiĂ£, waiĄ£, matĂ£ > fear surround clean
< waiĂ£, waiĘ£, matĂ£ > fear great clean
< waiĂ£, waiĂ£, matĂ£ > fear stomach clean
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 23
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Human perception experiments: stimuli
Cantonese tritones: nonce 3-syllable phrases built from syllables
in the lexicon
First and third syllables held fixed:
< waiĂ£, {wai
Ă
£, Ę£,
Ă
£, Ą£, Ę£, Ă£}, matĂ£ >
Tritone Gloss
< waiĂ£, wai
Ă
£, matĂ£ > fear power clean
< waiĂ£, waiĘ£, matĂ£ > fear appoint clean
< waiĂ£, wai
Ă
£, matĂ£ > fear fear clean
< waiĂ£, waiĄ£, matĂ£ > fear surround clean
< waiĂ£, waiĘ£, matĂ£ > fear great clean
< waiĂ£, waiĂ£, matĂ£ > fear stomach clean
Syllables identified with orthographic characters
Some characters may be more frequent than others:
Ę£ > Ą£ >
Ă
£ >> Ę£ >
Ă
£, Ă£ (based on corpus count of Mandarin
cognates, Da (2004)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 23
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Human perception experiment: contextual information
Stimuli: Cantonese citation tones and parts of tritones,
< waiĂ£, {wai
Ă
£, Ę£,
Ă
£, Ą£, Ę£, Ă£}, matĂ£ > from 5 speakers (3M, 2F)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 24
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Human perception experiment: contextual information
Stimuli: Cantonese citation tones and parts of tritones,
< waiĂ£, {wai
Ă
£, Ę£,
Ă
£, Ą£, Ę£, Ă£}, matĂ£ > from 5 speakers (3M, 2F)
Methodological inspiration: Perceptual normalization studies
(Ladefoged and Broadbent (1957), Wong and Diehl (2003));
Manipulated variable: context
(mono, pre, post, tri, isolation)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 24
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Human perception experiment: contextual information
Stimuli: Cantonese citation tones and parts of tritones,
< waiĂ£, {wai
Ă
£, Ę£,
Ă
£, Ą£, Ę£, Ă£}, matĂ£ > from 5 speakers (3M, 2F)
Methodological inspiration: Perceptual normalization studies
(Ladefoged and Broadbent (1957), Wong and Diehl (2003));
Manipulated variable: context
(mono, pre, post, tri, isolation)
Task: 6-alternative forced choice orthographic identification of
target tone
Participants: 36 native Cantonese speakers, tested in Hong
Kong and Los Angeles
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 24
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Acoustic stimuli: Manipulation of context
Time (s)
log f0/[Hz]
4.2
4.4
4.6
4.8
5.0
5.2
5.4
4.2
4.4
4.6
4.8
5.0
5.2
5.4
55
q
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
q
q
q
qqq
qq
qqq
qq
qqq
qq
qqq
qq
q
q
q
qqq
qq
q
qq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
q
q
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
q
qq
qq
q
q
q
q
q
qqq
qq
qqq
qq
qqq
qq
q
qq
qqq
qq
qqq
qq
qq
q
qq
qqq
qqq
q
q
qq
q
q
q
qqq
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
21
q
qq
qq
q
qq
qqq
qq
qq
q
qq
qqq
qq
q
qq
qqq
qq
qqq
qq
qqq
q
q
qqq
qq
q
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qq
q
q
q
q
qq
q
q
qq
q
q
q
q
qq
qq
qqq
qq
q
qq
qqq
q
q
qq
q
qq
qqq
qq
qqq
qq
q
qq
qqq
q
q
q
q
q
qq
qqq
qq
qqq
qq
qq
q
qq
q
qq
q
qq
qq
qq
q
q
q
qqq
qq
qqq
qq
qqq
qqq
qq
qq
q
qq
qq
q
qq
qqq
qq
qq
q
qqq
qq
qqq
qq
qqq
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
0.2 0.4 0.6
25
q
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
q
q
q
qqq
qq
qqq
qq
qqq
qq
qqq
qq
q
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qq
q
q
q
qq
q
qq
qqq
qq
qqq
qq
qqq
qqq
qq
q
qq
qq
qqq
qq
qqq
qq
q
q
q
qq
q
qq
q
qq
q
q
qqq
qq
qqq
qq
qqq
q
q
qq
q
q
q
qqq
qq
qqq
qq
qqq
qq
q
q
q
q
q
q
qq
qqq
qq
qq
q
qq
qq
q
q
q
q
qq
q
qq
q
q
q
qq
qq
q
qq
qq
qqq
qq
q
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
23
q
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
q
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
q
qq
qqq
qq
q
qq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qq
q
qq
qqq
qqq
qq
q
q
q
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qq
q
q
q
qqq
qq
qqq
q
q
qqq
qq
qq
q
qq
qqq
qq
qqq
qq
qqq
qq
q
q
q
qq
q
qq
qqq
qq
qqq
qq
qqq
qq
q
qq
qqq
q
q
qqq
qq
qqq
qq
qqq
qq
q
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
0.2 0.4 0.6
33
qqq
qq
q
qq
qq
qqq
qq
qqq
qqq
qq
q
qq
q
q
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
q
qq
q
qq
qq
qqq
qq
qqq
qq
qqq
qqq
q
q
qqq
qq
q
qq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
q
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
q
qq
q
qq
qq
qqq
qq
qqq
qq
qqq
qq
q
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
22
q
q
q
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
qq
q
q
q
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
q
q
q
qq
qq
q
qq
qq
qqq
qq
qqq
qqq
qq
q
qq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
q
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
q
qq
qq
q
qq
qqq
qq
qqq
qq
qqq
qq
q
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
PRE
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
0.2 0.4 0.6
Speaker
q
q
q
f4 f3 m6 m1 m5
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 25
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Human perception: following context helps separate rise
Time (s)
log f0/[Hz]
4.8
4.9
5.0
5.1
5.2
5.3
5.4
PRE−TARGET
TARGET
TRITONE
POST−TARGET
ISOLATION
0.1 0.2 0.3 0.4 0.5 0.6
Tone
25
23
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 26
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Human perception: following context helps separate rise
Tone
Percent of correct responses
0
20
40
60
80
55 25 33 21 23 22
Context
mono
pre
post
tri
iso
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 26
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Human perception: following context helps separate rise
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 26
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational modeling for insight into experiment
What were listeners listening to?
Effects of particular task/stimuli?
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 27
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational modeling for insight into experiment
What were listeners listening to?
Effects of particular task/stimuli?
Computational modeling allows explicit and tradeable
assumptions.
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 27
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational modeling for insight into experiment
What were listeners listening to?
Effects of particular task/stimuli?
Computational modeling allows explicit and tradeable
assumptions.
Assume: mean f0 values extracted from each sample, for 2-7
samples per syllable
Extracted using implementation of RAPT pitch tracker (Talkin
1995)
Assume: no lexical bias
Uniform prior (all tonal categories equally likely)
Ask: How accurate is tonal identification by machine?
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 27
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational modeling: parameterization of data
sample
log f0/[Hz]
4.4
4.6
4.8
5.0
5.2
5.4
4.4
4.6
4.8
5.0
5.2
5.4
55
q q q
q
q
q
q
q
q
q
q q
q
q q q
q
q
q
q q
q
q
q q
q
q
21
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q q
q
q
q
q
q
q
q
2 4 6 8
25
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q q
q q
q
q
q
q
23
q
q q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
2 4 6 8
33
q q
q q q
q
q q q q q
q q
q
q
q
q
q q q
q
q
q q q q
q
22
q q
q
q q q
q q q
q
q
q
q q
q
q q q
q
q q
q q q q q q
2 4 6 8
speaker
q f4
f3
m6
m1
m5
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 28
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational modeling: parameterization of data
sample
log f0/[Hz]
4.4
4.6
4.8
5.0
5.2
5.4
4.4
4.6
4.8
5.0
5.2
5.4
55
q q q
q
q
q
q
q
q
q
q q
q
q q q
q
q
q
q q
q
q
q q
q
q
21
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q q
q
q
q
q
q
q
q
2 4 6 8
25
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q q
q q
q
q
q
q
23
q
q q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
2 4 6 8
33
q q
q q q
q
q q q q q
q q
q
q
q
q
q q q
q
q
q q q q
q
22
q q
q
q q q
q q q
q
q
q
q q
q
q q q
q
q q
q q q q q q
2 4 6 8
speaker
q f4
f3
m6
m1
m5
Standardized data:
per-speaker z-scores
for log transformed f0
values (Levow 2006)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 28
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational modeling: support vector machines
Bennett and Bredensteiner (2000), Vapnik (1995)
1 Given labeled training data,
e.g. << 200, 210, 224 >,
Ă
£ >
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 29
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational modeling: support vector machines
Bennett and Bredensteiner (2000), Vapnik (1995)
1 Given labeled training data,
e.g. << 200, 210, 224 >,
Ă
£ >
2 Draw convex hull around
data from a given category
3 Find separating hyperplane
maximizing margin between
convex hulls
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 29
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational modeling: support vector machines
Bennett and Bredensteiner (2000), Vapnik (1995)
1 Given labeled training data,
e.g. << 200, 210, 224 >,
Ă
£ >
2 Draw convex hull around
data from a given category
3 Find separating hyperplane
maximizing margin between
convex hulls
4 Use separating hyperplane to
classify test data (unseen
data): train on 4 speakers,
test on 5th, average results
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 29
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational modeling: higher weight to post-target
syllable f0 values for separating rises
Hyperplane influenced more by post than pre-target f0
Syllable
Mean primal weight over speaker folds
−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
−0.5
0.0
0.5
1.0
−1.0
−0.5
0.0
0.5
1.0
1.5
55 vs 25
q
q
q
q
q
pre tarpost
25 vs 33
q
q
q
q
q
pre tarpost
33 vs 23
q
q
q
q
q
pre tarpost
−0.5
0.0
0.5
1.0
−0.5
0.0
0.5
1.0
−1.0
−0.5
0.0
0.5
1.0
1.5
55 vs 33
q
q
q
q
q
pre tarpost
25 vs 21
q
q
q
q
q
pre tarpost
33 vs 22
q
q
q
q
q
pre tarpost
0.0
0.2
0.4
0.6
−1
0
1
2
−2
−1
0
1
2
55 vs 21
q
q
q
q
q
pre tarpost
25 vs 23
q
q
q
q
q
pre tarpost
21 vs 23
q
q
q
q
q
pre tarpost
−0.2
0.0
0.2
0.4
0.6
−0.5
0.0
0.5
1.0
−2
−1
0
1
55 vs 23
q
q
q
q
q
pre tarpost
25 vs 22
q
q
q
q
q
pre tarpost
21 vs 22
q
q
q
q
q
pre tarpost
−0.1
0.0
0.1
0.2
0.3
0.4
0.5
−0.5
0.0
0.5
1.0
1.5
−2
0
2
4
55 vs 22
q
q
q
q
q
pre tarpost
33 vs 21
q
q
q
q
q
pre tarpost
23 vs 22
q
q
q
q
q
pre tarpost
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 30
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational modeling: higher weight to post-target
syllable f0 values for separating rises
Hyperplane influenced more by post than pre-target f0
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 30
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Local summary: temporal domain
Cantonese listeners benefit from having preceding and
following context available in tonal identification
Following context is especially informative for separating out the
Tone 25 rise, as shown in listener performance and by
computational modeling
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 31
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Local summary: temporal domain
Cantonese listeners benefit from having preceding and
following context available in tonal identification
Following context is especially informative for separating out the
Tone 25 rise, as shown in listener performance and by
computational modeling
Temporal domain may extend beyond associated syllable in
both directions
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 31
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Parameterization: f0 and f0 velocity (I)
Gauthier et al. (2007): Computational simulations on learning
Mandarin tones: better categorization performance with f0
velocity alone than f0 height alone
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 32
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Parameterization: f0 and f0 velocity (I)
Gauthier et al. (2007): Computational simulations on learning
Mandarin tones: better categorization performance with f0
velocity alone than f0 height alone
Strong hypothesis: f0 velocity is a sufficient acoustic cue
for good category separability of lexical tones for all tone
languages
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 32
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Parameterization: f0 and f0 velocity (I)
Gauthier et al. (2007): Computational simulations on learning
Mandarin tones: better categorization performance with f0
velocity alone than f0 height alone
Strong hypothesis: f0 velocity is a sufficient acoustic cue
for good category separability of lexical tones for all tone
languages
⇒ To test: Cross-linguistic tonal production data
Natural test case: languages with level tonal contrasts
Methods: very difficult to test using psychological
experimentation ⇒ rely on computational modeling
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 32
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Parameterization: f0 and f0 velocity (II)
Level and rise Rise and fall Two rises Two levels
Time
f0
Time
f0 velocity
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 33
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Parameterization: f0 and f0 velocity (II)
Level and rise Rise and fall Two rises Two levels
Time
f0
Time
f0
Time
f0 velocity
Time
f0 velocity
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 33
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Parameterization: f0 and f0 velocity (II)
Level and rise Rise and fall Two rises Two levels
Time
f0
Time
f0
Time
f0
Time
f0 velocity
Time
f0 velocity
Time
f0 velocity
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 33
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Parameterization: f0 and f0 velocity (II)
Level and rise Rise and fall Two rises Two levels
Time
f0
Time
f0
Time
f0
Time
f0
Time
f0 velocity
Time
f0 velocity
Time
f0 velocity
Time
f0 velocity
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 33
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Level tone languages have contours too (Bole)
`
an`
ın
LL
n´
em`
a
HL
m´
eng`
o
HL
‘The owners of prosperity came back’
Time (s)
0 1.003
Pitch (Hz)
50
150
L L H L H L
Time (s)
0 1.003
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 34
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Linear discriminant analysis for dimensionality reduction
Don’t project there! Project here!
(Hastie, Tibshirani, and Friedman 2009)
Project onto axis to maximize ratio of between-class to
within-class scatter
Between-class scatter: roughly, distance between class means
Within-class scatter: class variances
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 35
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Better separability of H/L in Bole with f0 velocity than f0
for syllable averages
log mean f0
Density
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
110 120 130 140 150 160 170
tone
H
L
Bole: mean log f0
f0 change between 2 uniform f0 samples
Density
0.00
0.01
0.02
0.03
0.04
0.05
0.06
−40 −20 0 20 40
tone
H
L
Bole: mean f0 change
Possible to have separability better with f0 velocity alone than
f0 alone in Bole if 1 real value
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 36
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
But f0 velocity alone can’t separate level tone contrasts in
Cantonese, Hmong
Hmong: log f0, 10 values Hmong: f0 change, 10 values
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 37
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Summary: beyond 2-D tonal spaces
What have we learned about the learner’s predicament so far?
Temporal domain beyond associated syllable is a source of some
dimensionality
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 38
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Summary: beyond 2-D tonal spaces
What have we learned about the learner’s predicament so far?
Temporal domain beyond associated syllable is a source of some
dimensionality
No simple invariant f0 parameter set: just f0 or just f0 velocity
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 38
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Parameterization: voice quality parameters beyond f0
f0-related parameters are a subset of voice quality parameters
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 39
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Parameterization: voice quality parameters beyond f0
f0-related parameters are a subset of voice quality parameters
Existence of languages with tonal contrasts cued by phonation
contrasts (e.g. Hmong, Vietnamese) ⇒ tonal space must
include voice quality parameters beyond f0
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 39
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Parameterization: voice quality parameters beyond f0
f0-related parameters are a subset of voice quality parameters
Existence of languages with tonal contrasts cued by phonation
contrasts (e.g. Hmong, Vietnamese) ⇒ tonal space must
include voice quality parameters beyond f0
What about tonal languages without contrastive phonation?
Cantonese tonal perception: listeners are sensitive to presence of
creak and creak can increase tonal identification accuracy (Lam
and Yu 2010, Yu and Lam 2011)
Result: Even in tonal languages without contrastive phonation,
tonal space must include voice quality parameters beyond f0
values.
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 39
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Summary: beyond 2-D tonal spaces
What have we learned about the learner’s predicament so far?
Temporal domain beyond associated syllable is a source of some
dimensionality
No simple invariant f0 parameter set: just f0 or just f0 velocity
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 40
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Summary: beyond 2-D tonal spaces
What have we learned about the learner’s predicament so far?
Temporal domain beyond associated syllable is a source of some
dimensionality
No simple invariant f0 parameter set: just f0 or just f0 velocity
Learner must consider other voice quality parameters than
just idealized f0 values in a wide range of tone languages
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 40
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Temporal resolution: how many samples? (I)
Dense sampling Coarse sampling
Time
f0
q q q q q q q q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Time
f0
q
q
q
q
Each sampled point could contribute to complexity in tonal map!
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 41
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Temporal resolution: how many samples? (II)
Dense sampling
Gauthier et al. (2007): 30 samples/syllable (1 sample/6 ms)
Automatic speech recognition: 1 sample/10 ms
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 42
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Temporal resolution: how many samples? (II)
Dense sampling
Gauthier et al. (2007): 30 samples/syllable (1 sample/6 ms)
Automatic speech recognition: 1 sample/10 ms
Coarse sampling
Linguistics: Chao (1933, 1968), International Phonetic Alphabet
Ă
£,Ę£,ŁŘ£,Ď£, 3 samples/tone
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 42
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Temporal resolution: how many samples? (II)
Dense sampling
Gauthier et al. (2007): 30 samples/syllable (1 sample/6 ms)
Automatic speech recognition: 1 sample/10 ms
Coarse sampling
Linguistics: Chao (1933, 1968), International Phonetic Alphabet
Ă
£,Ę£,ŁŘ£,Ď£, 3 samples/tone
Automatic speech recognition
3 - 5 samples/tone: Qian et al. (2007): Cantonese; Wang and
Levow (2008), Zhou et al. (2008): Mandarin
Tian et al. (2004): Higher tonal ID accuracy with 4
samples/tone than 1 sample/10 ms (Mandarin)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 42
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Temporal resolution: how many samples? (II)
Dense sampling
Gauthier et al. (2007): 30 samples/syllable (1 sample/6 ms)
Automatic speech recognition: 1 sample/10 ms
Coarse sampling
Linguistics: Chao (1933, 1968), International Phonetic Alphabet
Ă
£,Ę£,ŁŘ£,Ď£, 3 samples/tone
Automatic speech recognition
3 - 5 samples/tone: Qian et al. (2007): Cantonese; Wang and
Levow (2008), Zhou et al. (2008): Mandarin
Tian et al. (2004): Higher tonal ID accuracy with 4
samples/tone than 1 sample/10 ms (Mandarin)
Hypothesis: Good tonal category separability can be maintained
under coarse temporal sampling of phonetic parameters.
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 42
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Human perception experiment
Stimuli: Cantonese tritones,
< waiĂ£, {wai
Ă
£, Ę£,
Ă
£, Ą£, Ę£, Ă£}, matĂ£ > from 5 speakers (3M, 2F)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 43
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Human perception experiment
Stimuli: Cantonese tritones,
< waiĂ£, {wai
Ă
£, Ę£,
Ă
£, Ą£, Ę£, Ă£}, matĂ£ > from 5 speakers (3M, 2F)
Methodological inspiration: Multiple phoneme restoration in
interrupted speech (Warren 1970)
Manipulated variable: sampling resolution
(2, 3, 5, 7 samples/syllable, intact)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 43
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Human perception experiment
Stimuli: Cantonese tritones,
< waiĂ£, {wai
Ă
£, Ę£,
Ă
£, Ą£, Ę£, Ă£}, matĂ£ > from 5 speakers (3M, 2F)
Methodological inspiration: Multiple phoneme restoration in
interrupted speech (Warren 1970)
Manipulated variable: sampling resolution
(2, 3, 5, 7 samples/syllable, intact)
Task: 6-alternative forced choice orthographic identification of
second tone in tritone
Participants: 39 native Cantonese speakers, tested in Hong
Kong and Los Angeles
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 43
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Stimuli example: waveform/spectrogram
[Intact tritone]
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 44
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Stimuli example: waveform/spectrogram
[7 samples per syllable]
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 45
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Stimuli example: waveform/spectrogram
[5 samples per syllable]
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 46
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Stimuli example: waveform/spectrogram
[3 samples per syllable]
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 47
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Stimuli example: waveform/spectrogram
[2 samples per syllable]
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 48
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Tonal ID accuracy maintained with coarse resolution
Tonal ID accuracy well above chance
even down to 2 samples/syllable!
Resolution
Percent of correct responses
0
10
20
30
40
50
60
70
samp2 samp3 samp5 samp7 intact
Resolution Percent correct
samp2 52.54 (2.41)
samp3 60.51 (2.76)
samp5 64.13 (2.83)
samp7 66.38 (2.91)
intact 67.46 (2.90)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 49
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Tonal ID accuracy maintained with coarse resolution
Tonal ID accuracy well above chance
even down to 2 samples/syllable!
Resolution
Percent of correct responses
0
10
20
30
40
50
60
70
samp2 samp3 samp5 samp7 intact
Resolution Percent correct
samp2 52.54 (2.41)
samp3 60.51 (2.76)
samp5 64.13 (2.83)
samp7 66.38 (2.91)
intact 67.46 (2.90)
SVM classification
accuracy ≈75% for all
conditions
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 49
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Tonal ID accuracy maintained with coarse resolution
Tonal ID accuracy well above chance
even down to 2 samples/syllable!
Resolution
Percent of correct responses
0
10
20
30
40
50
60
70
samp2 samp3 samp5 samp7 intact
Resolution Percent correct
samp2 52.54 (2.41)
samp3 60.51 (2.76)
samp5 64.13 (2.83)
samp7 66.38 (2.91)
intact 67.46 (2.90)
SVM classification
accuracy ≈75% for all
conditions
Accuracy with as few
as 6 real values not
statistically different
from accuracy with 69
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 49
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Cross-linguistic computational modeling for sampling
resolution example: Bole, log f0 values
Linear discriminant 1, 2 f0 samples
Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
−2 0 2 4
tone
H
L
2 log f0 values
Linear discriminant 1, 3 f0 samples
Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
−2 0 2 4
tone
H
L
3 log f0 values
Linear discriminant 1, 10 f0 samples
Density
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
−2 0 2 4
tone
H
L
10 log f0 values
Little difference in overlap between H/L
from 2 to 10 f0 samples
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 50
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Local summary: temporal resolution
Cantonese listeners maintain tonal ID accuracy under low
temporal resolution
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 51
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Local summary: temporal resolution
Cantonese listeners maintain tonal ID accuracy under low
temporal resolution
Computational modeling shows that this result can be
understood given only a minimal acoustic parameterization of
the speech signal
Result also holds for computational modeling in other languages
studied
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 51
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Local summary: temporal resolution
Cantonese listeners maintain tonal ID accuracy under low
temporal resolution
Computational modeling shows that this result can be
understood given only a minimal acoustic parameterization of
the speech signal
Result also holds for computational modeling in other languages
studied
What about vowels and consonants? Vowels similar situation to
tones (Strange et al. 1983, Nearey and Assmann 1986,
Liberman p.c.); “landmarks” for consonants (Stevens 2002)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 51
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Local summary: temporal resolution
Cantonese listeners maintain tonal ID accuracy under low
temporal resolution
Computational modeling shows that this result can be
understood given only a minimal acoustic parameterization of
the speech signal
Result also holds for computational modeling in other languages
studied
What about vowels and consonants? Vowels similar situation to
tones (Strange et al. 1983, Nearey and Assmann 1986,
Liberman p.c.); “landmarks” for consonants (Stevens 2002)
Hypothesis: there is structure in the class of
phonological maps in natural language
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 51
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Local summary
What have we learned about the learner’s predicament so far?
Temporal domain beyond associated syllable is a source of some
dimensionality
No simple invariant f0 parameter set: just f0 or just f0 velocity
Learner must consider both information from the speech signal
and top down information
Learner must consider other voice quality parameters than just
idealized f0 values in a wide range of tone languages
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 52
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Local summary
What have we learned about the learner’s predicament so far?
Temporal domain beyond associated syllable is a source of some
dimensionality
No simple invariant f0 parameter set: just f0 or just f0 velocity
Learner must consider both information from the speech signal
and top down information
Learner must consider other voice quality parameters than just
idealized f0 values in a wide range of tone languages
Sufficiency of coarse temporal resolution hints at structure
in tonal maps
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 52
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Local summary
What have we learned about the learner’s predicament so far?
Temporal domain beyond associated syllable is a source of some
dimensionality
No simple invariant f0 parameter set: just f0 or just f0 velocity
Learner must consider both information from the speech signal
and top down information
Learner must consider other voice quality parameters than just
idealized f0 values in a wide range of tone languages
Sufficiency of coarse temporal resolution hints at structure
in tonal maps
Learner must consider both information from the speech signal
and top down information (Lin 2005, Feldman et al. 2009,
Yeung and Werker 2009)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 52
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Studying learnability to inform studying learning
{Phonetic data} Learner
−
−
−
−
→
{Tonal maps}
Understanding how the hypothesis space is structured
helps us understand how the learner might proceed
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 53
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational simulations of learning: distributional
learning
Studies of phonological category learning use
Gaussian mixture models
Figure: Demonstration of
distributional learning in infants
(Maye et al. 2002)
Figure: Some mixtures of two
Gaussians (Kalai et al. 2010)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 54
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational simulation of learning: example
−3 −2 −1 0 1 2 3 4
−3 −2 −1 0 1 2 3
LD1
LD1
Classification
Figure: The target: Bole H and L
tones from a single speaker in f0 and
f0 velocity space
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 55
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational simulation of learning: example
−3 −2 −1 0 1 2 3 4
−3 −2 −1 0 1 2 3
LD1
LD1
Classification
Figure: The target: Bole H and L
tones from a single speaker in f0 and
f0 velocity space
−3 −2 −1 0 1 2 3 4
−3 −2 −1 0 1 2 3
LD1
LD1
Classification
Figure: Gaussian mixture clustering
solution: WRONG!
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 55
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Computational simulation of learning: what went wrong?
What can we learn from the failure of the learner?
Is that space a cognitively motivated space?
Are we missing relevant dimensions?
Is the learning algorithm exploiting structure in the hypothesis
space?
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 56
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Conclusions
Assertions:
There is structure in the potentially high-dimensional definition
of phonological maps
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Conclusions
Assertions:
There is structure in the potentially high-dimensional definition
of phonological maps
To study phonological category learning, we need to understand
how the hypothesis space is structured
The structure provides inductive biases for the learner
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Conclusions
Assertions:
There is structure in the potentially high-dimensional definition
of phonological maps
To study phonological category learning, we need to understand
how the hypothesis space is structured
The structure provides inductive biases for the learner
To characterize structure in the hypothesis space, we need to
understand what phonetic parameters are involved
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Conclusions
What have we learned so far about tonal maps?
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Conclusions
What have we learned so far about tonal maps?
Temporal window for phonetic parameters larger than
associated syllable
Both f0 and f0 change values may contribute in
parameterization of f0-based information
Phonetic space includes voice quality parameters beyond f0
values
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Conclusions
What have we learned so far about tonal maps?
Temporal window for phonetic parameters larger than
associated syllable
Both f0 and f0 change values may contribute in
parameterization of f0-based information
Phonetic space includes voice quality parameters beyond f0
values
Sufficiency of coarse temporal resolution is consistent with
structure in tonal maps
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Conclusions
What have we learned so far about tonal maps?
Temporal window for phonetic parameters larger than
associated syllable
Both f0 and f0 change values may contribute in
parameterization of f0-based information
Phonetic space includes voice quality parameters beyond f0
values
Sufficiency of coarse temporal resolution is consistent with
structure in tonal maps
Studied tonal maps appear to have nearly linearly
separable concepts
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Conclusions
The future: structure in the hypothesis space
Separability: how well separated? linearly separable?
Shapes: connected? convex? ellipses?
Distributions: simple Gaussian mixtures?
With an understanding of structure in the hypothesis
space, we can build a cognitively motivated model of
phonological category acquisition
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Acknowledgments
For help with recordings, linguistic consultation:
Alhaji Maina Gimba and Russell Schuh (Bole)
Jianjing Kuang (Beijing Mandarin)
Cindy Chan, Vincie Ho, Hiu Wai Lam, Shing Yin Li, Cedric Loke
(Cantonese)
Chou Khang and Phong Yang, CSU Fresno Department of Linguistics
(Hmong)
For help with perception experiments, data processing:
Hiu Wai Lam, Prairie Lam; Cindy Chan, Samantha Chan, Chris Fung, Shing
Yin Li, Cedric Loke, Antonio Sou, Grace Tsai, Joanna Wang
For invaluable discussion: Edward Stabler and Megha Sundara; Abeer
Alwan, Robert Daland, Bruce Hayes, Sun-Ah Jun, Patricia Keating, John
Kingston, Jody Kreiman, Mark Liberman, Russell Schuh, Colin Wilson, and
Kie Zuraw; U. Maryland PFNA group
This work was supported by a NSF graduate fellowship, NSF grant
BCS-0720304, and a UCLA Linguistics Department Ladefoged scholarship
and Summer Graduate Research Fellowship
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 58
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Creaky voice in Cantonese tonal perception
Experiment 1 (Lam and Yu 2010)
Stimuli: Minimal tone set on
monosyllable, extracted from
connected speech (4M/4F)
Manipulated variable: presence
of creak in Ą£ (T4)
Task: 6-alternative forced choice
orthographic lexical identification
Participants: 16 native Cantonese
speakers, tested in Los Angeles
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 59
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Creaky voice in Cantonese tonal perception
Experiment 1 (Lam and Yu 2010)
Stimuli: Minimal tone set on
monosyllable, extracted from
connected speech (4M/4F)
Manipulated variable: presence
of creak in Ą£ (T4)
Task: 6-alternative forced choice
orthographic lexical identification
Participants: 16 native Cantonese
speakers, tested in Los Angeles
Experiment 2 (Yu and Lam 2011)
Stimuli: Mono/bisyllables,
extracted from connected speech:
minimal pair (in Ą£ (T4), Ă£),
(1M/1F)
Methodological inspiration:
Contextual normalization of f0
(Wong and Diehl 2002)
Manipulated variable: presence
of creak, f0 shift (8 steps on
first syllable in bisyllable)
Task: 2-alternative forced choice
orthographic lexical identification
Participants: 20 native Cantonese
speakers, tested in Hong Kong
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 59
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Experimental results: the role of creaky voice in Cantonese
tonal perception
Presence of creak
Percent of correct responses for T4
0
20
40
60
80
100
83.11 (2.25)
58.98 (3.57)
creak no
Exp 1: Increase in ID accuracy of T4
f0 shift (semitones)
Proportion of T4 responses
0.2
0.4
0.6
0.8
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
−1 0 1 2
Voice quality
q modal
q creaky
Exp 2: Bias for T4
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 60
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Difficult to abstract away from phonation in studying tone
Since we knew we would have to exclude any Tone 3
productions which had creaky voice, we obtained twice as
many Tone 3 syllables as the others. (Whalen and Xu
1992)
Creaky voice is prevalent in Mandarin ,
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 61
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Difficult to abstract away from phonation in studying tone
Since we knew we would have to exclude any Tone 3
productions which had creaky voice, we obtained twice as
many Tone 3 syllables as the others. (Whalen and Xu
1992)
Creaky voice is prevalent in Mandarin ,
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 61
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Confusion matrix for temporal resolution experiment
(human perception)
Response frequency percentage
Response
22
23
21
33
25
55
22
23
21
33
25
55
22
23
21
33
25
55
22
23
21
33
25
55
22
23
21
33
25
55
samp2, 55
samp3, 55
samp5, 55
samp7, 55
intact, 55
20 60 100
samp2, 25
samp3, 25
samp5, 25
samp7, 25
intact, 25
20 60 100
samp2, 33
samp3, 33
samp5, 33
samp7, 33
intact, 33
20 60 100
samp2, 21
samp3, 21
samp5, 21
samp7, 21
intact, 21
20 60 100
samp2, 23
samp3, 23
samp5, 23
samp7, 23
intact, 23
20 60 100
samp2, 22
samp3, 22
samp5, 22
samp7, 22
intact, 22
20 60 100
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 62
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Confusion matrix for temporal resolution experiment
(human perception)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 62
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Confusion matrix for phonetic context experiment (human
perception)
Response frequency percentage
Response
22
23
21
33
25
55
22
23
21
33
25
55
22
23
21
33
25
55
22
23
21
33
25
55
22
23
21
33
25
55
mono, 55
pre, 55
post, 55
tri, 55
iso, 55
20 60 100
mono, 25
pre, 25
post, 25
tri, 25
iso, 25
20 60 100
mono, 33
pre, 33
post, 33
tri, 33
iso, 33
20 60 100
mono, 21
pre, 21
post, 21
tri, 21
iso, 21
20 60 100
mono, 23
pre, 23
post, 23
tri, 23
iso, 23
20 60 100
mono, 22
pre, 22
post, 22
tri, 22
iso, 22
20 60 100
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 63
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Confusion matrix for phonetic context experiment (human
perception)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 63
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Vapnik-Chervonenkis dimension: definition by example —
rays in R
rθ
x
θ
rθ = {x ∈ R|θ ≤ x}
rθ =
1 if θ ≤ x
0 otherwise
r∞ = {} ∀x ∈ R (empty ray)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Vapnik-Chervonenkis dimension: definition by example —
rays in R
Given sample S ⊆ R, class of tonal maps T
if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Vapnik-Chervonenkis dimension: definition by example —
rays in R
Given sample S ⊆ R, class of tonal maps T
if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
rθ
x
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Vapnik-Chervonenkis dimension: definition by example —
rays in R
Given sample S ⊆ R, class of tonal maps T
if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
x
−4 −3 −2 −1 0 1 2 3 4
S |S| ℘(S) T for T ∩ S Shattered?
{} 0 {} r∞ Yes
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Vapnik-Chervonenkis dimension: definition by example —
rays in R
Given sample S ⊆ R, class of tonal maps T
if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
x
−4 −3 −2 −1 0 1 2 3 4
S |S| ℘(S) T for T ∩ S Shattered?
{} 0 {} r∞ Yes
{1} 1 {}, {1} r∞, rθ≤1 Yes
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Vapnik-Chervonenkis dimension: definition by example —
rays in R
Given sample S ⊆ R, class of tonal maps T
if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
r1
x
−4 −3 −2 −1 0 1 2 3 4
S |S| ℘(S) T for T ∩ S Shattered?
{} 0 {} r∞ Yes
{1} 1 {}, {1} r∞, rθ≤1 Yes
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Vapnik-Chervonenkis dimension: definition by example —
rays in R
Given sample S ⊆ R, class of tonal maps T
if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
r1
x
−4 −3 −2 −1 0 1 2 3 4
S |S| ℘(S) T for T ∩ S Shattered?
{} 0 {} r∞ Yes
{1} 1 {}, {1} r∞, rθ≤1 Yes
{0, 1} 2 {}, {1} r∞, rθ≤1
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Vapnik-Chervonenkis dimension: definition by example —
rays in R
Given sample S ⊆ R, class of tonal maps T
if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
r0
x
−4 −3 −2 −1 0 1 2 3 4
S |S| ℘(S) T for T ∩ S Shattered?
{} 0 {} r∞ Yes
{1} 1 {}, {1} r∞, rθ≤1 Yes
{0, 1} 2 {}, {1} r∞, rθ≤1
{0, 1} rθ≤0
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Vapnik-Chervonenkis dimension: definition by example —
rays in R
Given sample S ⊆ R, class of tonal maps T
if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
r1
x
−4 −3 −2 −1 0 1 2 3 4
S |S| ℘(S) T for T ∩ S Shattered?
{} 0 {} r∞ Yes
{1} 1 {}, {1} r∞, rθ≤1 Yes
{0, 1} 2 {}, {1} r∞, rθ≤1
{0, 1} rθ≤0
{0} ?? No!
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Vapnik-Chervonenkis dimension: definition by example —
rays in R
Given sample S ⊆ R, class of tonal maps T
if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
r0
x
−4 −3 −2 −1 0 1 2 3 4
S |S| ℘(S) T for T ∩ S Shattered?
{} 0 {} r∞ Yes
{1} 1 {}, {1} r∞, rθ≤1 Yes
{0, 1} 2 {}, {1} r∞, rθ≤1
{0, 1} rθ≤0
{0} ?? No!
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Vapnik-Chervonenkis dimension: definition by example —
rays in R
Given sample S ⊆ R, class of tonal maps T
if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
V C(T ) = max{|S| : S is shattered by T } = 1
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
Vapnik-Chervonenkis dimension: definition by example —
rays in R
Given sample S ⊆ R, class of tonal maps T
if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
What if T consisted of the union of a finite number of
intervals on R?
[0,1]
[-4,-1]
x
−4 −3 −2 −1 0 1 2 3 4
V C(T ) = max{|S| : S is shattered by T } infinite
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
VC dimension and feasible learnability
Finite VC dimension is a criterion for feasible learnability
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 65
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
VC dimension and feasible learnability
Finite VC dimension is a criterion for feasible learnability
VC dim of ellipsoids in Rd : (d2 + 3d)/2 (Akama et al. 2011)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 65
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
VC dimension and feasible learnability
Finite VC dimension is a criterion for feasible learnability
VC dim of ellipsoids in Rd : (d2 + 3d)/2 (Akama et al. 2011)
VC dim of arbitrary convex polygons in Rd ∀d is infinite
(Blumer et al. 1989)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 65
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
VC dimension and feasible learnability
Finite VC dimension is a criterion for feasible learnability
VC dim of ellipsoids in Rd : (d2 + 3d)/2 (Akama et al. 2011)
VC dim of arbitrary convex polygons in Rd ∀d is infinite
(Blumer et al. 1989)
VC dimension is applicable to real and discrete spaces
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 65
A strategy for characterizing the learning problem
Characterizing tonal maps
Is onset/offset f0 sufficient for defining tonal spaces?
Structure in the hypothesis space
VC dimension and feasible learnability
Finite VC dimension is a criterion for feasible learnability
VC dim of ellipsoids in Rd : (d2 + 3d)/2 (Akama et al. 2011)
VC dim of arbitrary convex polygons in Rd ∀d is infinite
(Blumer et al. 1989)
VC dimension is applicable to real and discrete spaces
VC dimension of constraint ranking/weighting hypothesis spaces
for OT and HG is finite (Riggle 2009, Bane et al. 2010)
Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 65