Upgrade to Pro — share decks privately, control downloads, hide ads and more …

The learnability of the tones from the speech signal

krisyu
November 30, 2011

The learnability of the tones from the speech signal

Invited colloquium talk at Macquarie University, Centre for Language Sciences/Linguistics. Sydney, Australia

krisyu

November 30, 2011
Tweet

More Decks by krisyu

Other Decks in Research

Transcript

  1. A strategy for characterizing the learning problem
    Characterizing tonal maps
    The learnability of tones from the speech signal
    Kristine M. Yu
    Department of Linguistics
    University of Maryland College Park
    University of Massachusetts Amherst
    Macquarie University
    November 30, 2011
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 1

    View Slide

  2. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Overview
    1 What is the target of learning in learning phonological
    categories?
    2 What are inductive biases for learning phonological
    categories?
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 2

    View Slide

  3. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Overview
    1 What is the target of learning in learning phonological
    categories?
    2 What are inductive biases for learning phonological
    categories?
    Model system: lexical tones in tonal languages
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 2

    View Slide

  4. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Overview
    1 What is the target of learning in learning phonological
    categories?
    2 What are inductive biases for learning phonological
    categories?
    Model system: lexical tones in tonal languages
    Methods:
    0 Theoretical inquiry
    1 Cross linguistic fieldwork
    2 Psychological experiments
    3 Computational modeling
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 2

    View Slide

  5. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Phonological categories must be learned
    . . .categories, defined as relations between a discrete level
    and a parametric phonetic level, cannot be universal. That
    is, the picture of human phonetic resources as pegs in an
    IPA-like phonetic pegboard cannot be sustained. (Pierrehumbert
    2003: 127)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 3

    View Slide

  6. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Phonological categories must be learned
    . . .categories, defined as relations between a discrete level
    and a parametric phonetic level, cannot be universal. That
    is, the picture of human phonetic resources as pegs in an
    IPA-like phonetic pegboard cannot be sustained. (Pierrehumbert
    2003: 127)
    The “same” categories have different phonetic realizations in different
    languages (Cho and Ladefoged 1999, i.a.)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 3

    View Slide

  7. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Phonological categories must be learned
    . . .categories, defined as relations between a discrete level
    and a parametric phonetic level, cannot be universal. That
    is, the picture of human phonetic resources as pegs in an
    IPA-like phonetic pegboard cannot be sustained. (Pierrehumbert
    2003: 127)
    Infants begin as “universal citizens” in being able to discriminate
    (almost) any speech sound contrast but develop language-specific
    sensitivity to contrasts in the first year of life (tones: Mattock et al.
    2008)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 3

    View Slide

  8. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    The target of learning: what are tones?
    What does it mean to learn the lexical tones in a tonal lan-
    guage, e.g. in Mandarin?
    (Xu 1997)
    Tone 1 (high level):
    Ă
    £ma (55) ‘mother’
    Tone 2 (rise):
    Ę£ma (35) ‘hemp’
    Tone 3 (fall-rise):
    ŁŘ£ma (214) ‘horse’
    Tone 4 (fall):
    Ď£ma (51) ‘scold’
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 4

    View Slide

  9. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Interlude: A vowel map in 2-D formant space
    Figure: Peterson and Barney (1952): An
    English vowel map in F1SS
    , F2SS
    space
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5

    View Slide

  10. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Interlude: A vowel map in 2-D formant space
    Figure: Peterson and Barney (1952): An
    English vowel map in F1SS
    , F2SS
    space
    F1SS , F2SS Vowel
    240, 2280 {/i/}
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5

    View Slide

  11. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Interlude: A vowel map in 2-D formant space
    Figure: Peterson and Barney (1952): An
    English vowel map in F1SS
    , F2SS
    space
    F1SS , F2SS Vowel
    240, 2280 {/i/}
    460, 1330 {/Ç/}
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5

    View Slide

  12. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Interlude: A vowel map in 2-D formant space
    Figure: Peterson and Barney (1952): An
    English vowel map in F1SS
    , F2SS
    space
    F1SS , F2SS Vowel
    240, 2280 {/i/}
    460, 1330 {/Ç/}
    475, 1220 {/U/}
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5

    View Slide

  13. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Interlude: A vowel map in 2-D formant space
    Figure: Peterson and Barney (1952): An
    English vowel map in F1SS
    , F2SS
    space
    F1SS , F2SS Vowel
    240, 2280 {/i/}
    460, 1330 {/Ç/}
    475, 1220 {/U/}
    686, 1028 {/A, O/}
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5

    View Slide

  14. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Interlude: A vowel map in 2-D formant space
    Figure: Peterson and Barney (1952): An
    English vowel map in F1SS
    , F2SS
    space
    F1SS , F2SS Vowel
    240, 2280 {/i/}
    460, 1330 {/Ç/}
    475, 1220 {/U/}
    686, 1028 {/A, O/}
    400, 3500 {/i/}
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5

    View Slide

  15. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Interlude: A vowel map in 2-D formant space
    Figure: Peterson and Barney (1952): An
    English vowel map in F1SS
    , F2SS
    space
    F1SS , F2SS Vowel
    240, 2280 {/i/}
    460, 1330 {/Ç/}
    475, 1220 {/U/}
    686, 1028 {/A, O/}
    400, 3500 {/i/}
    : :
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 5

    View Slide

  16. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    The target of learning: what are tones?
    {Data} Learner





    {Phonological maps}
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 6

    View Slide

  17. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    The target of learning: what are tones?
    {Phonetic data} Learner





    {Tonal maps}
    Restriction for this project: “pure speech” situation—refer only to
    acoustic information (methodological abstraction)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 6

    View Slide

  18. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Defining phonological maps
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 7

    View Slide

  19. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Defining phonological maps
    Morphosyntactic maps:
    {sequences of morphemes} → {sets of meanings}
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 7

    View Slide

  20. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Defining phonological maps
    Morphosyntactic maps:
    {sequences of morphemes} → {sets of meanings}
    Phonological maps:
    {sequences of phonetic parameter values} →
    {sets of phonological categories}
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 7

    View Slide

  21. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    A vowel map in 2-D formant space
    Figure: Peterson and Barney (1952): An
    English vowel map in F1SS
    , F2SS
    space
    F1SS , F2SS Vowel
    240, 2280 {/i/}
    460, 1330 {/Ç/}
    475, 1220 {/U/}
    686, 1028 {/A, O/}
    400, 3500 {/i/}
    : :
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 8

    View Slide

  22. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Defining phonological maps
    Parallels with morphosyntax
    Generalization from finite sample to infinite set in learning
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 9

    View Slide

  23. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Defining phonological maps
    Parallels with morphosyntax
    Generalization from finite sample to infinite set in learning
    Abstraction away from unbounded context to focus on primary
    evidence: speech signal
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 9

    View Slide

  24. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Defining phonological maps
    Parallels with morphosyntax
    Generalization from finite sample to infinite set in learning
    Abstraction away from unbounded context to focus on primary
    evidence: speech signal
    Ambiguity ⇒ probabilistic distribution of phonological
    categories over phonetic spaces (Pierrehumbert 2003)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 9

    View Slide

  25. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Defining phonological maps
    Parallels with morphosyntax
    Generalization from finite sample to infinite set in learning
    Abstraction away from unbounded context to focus on primary
    evidence: speech signal
    Ambiguity ⇒ probabilistic distribution of phonological
    categories over phonetic spaces (Pierrehumbert 2003)
    F1SS = 686, F2SS = 1028 → {/A, O/}
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 9

    View Slide

  26. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Defining phonological maps
    Parallels with morphosyntax
    Generalization from finite sample to infinite set in learning
    Abstraction away from unbounded context to focus on primary
    evidence: speech signal
    Ambiguity ⇒ probabilistic distribution of phonological
    categories over phonetic spaces (Pierrehumbert 2003)
    F1SS = 686, F2SS = 1028 → {p(/A/) = 0.45, p(/O/) = 0.55}
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 9

    View Slide

  27. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Characterizing phonological maps
    Key questions:
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 10

    View Slide

  28. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Characterizing phonological maps
    Key questions:
    1 What kinds of phonological categories are to be represented
    in the range of the map? (Here: phonemes, by stipulation)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 10

    View Slide

  29. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Characterizing phonological maps
    Key questions:
    1 What kinds of phonological categories are to be represented
    in the range of the map? (Here: phonemes, by stipulation)
    2 What is the phonetic parameter space—the space of
    phonetic parameters—for the phonological categories?
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 10

    View Slide

  30. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Characterizing phonological maps
    Key questions:
    1 What kinds of phonological categories are to be represented
    in the range of the map? (Here: phonemes, by stipulation)
    2 What is the phonetic parameter space—the space of
    phonetic parameters—for the phonological categories?
    3 What are properties of the distribution of the phonological
    categories over the phonetic parameter space?
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 10

    View Slide

  31. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Methodological abstraction: which parameters?
    Reality: Probabilistic distribution of phonological categories
    over phonetic spaces
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 11

    View Slide

  32. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Methodological abstraction: which parameters?
    Reality: Probabilistic distribution of phonological categories
    over phonetic spaces
    Model: partition of set of phonological categories over
    phonetic spaces
    Tonal identification (humans), hard classification algorithms
    (machines)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 11

    View Slide

  33. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Methodological abstraction: which parameters?
    Reality: Probabilistic distribution of phonological categories
    over phonetic spaces
    Model: partition of set of phonological categories over
    phonetic spaces
    Tonal identification (humans), hard classification algorithms
    (machines)
    Example: A two tone tonal inventory, e.g. {H, L}
    Duda, Hart and Stork (2001)
    Probability distribution p(x|ω) over x,
    x = mean fundamental frequency (f0)
    Two classes: ω1
    = L, ω2
    = H
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 11

    View Slide

  34. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Language input begins in the womb
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 12

    View Slide

  35. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Language input begins in the womb
    Mic introduced at beginning of labor, after amniotic sac rupture
    Audio file courtesy of Christine Moon, recorded by Denis Querleu, see methods in
    Querleu et al. (1988).
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 12

    View Slide

  36. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Language input begins in the womb
    Pitch information is available in the womb.
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 12

    View Slide

  37. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    2-D tonal spaces: f0init
    , f0fin
    Figure: Cantonese citation tones in f0init
    , f0fin
    space
    (Barry and Blamey 2004)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 13

    View Slide

  38. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    2-D tonal spaces: f0init
    , f0fin
    Figure: Cantonese citation tones in f0init
    , f0fin
    space
    (Barry and Blamey 2004)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 13

    View Slide

  39. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Can we characterize tonal maps as being feasibly learnable?
    Figure: Map in a 2-D parameter space
    In phonetic space: each
    parameter defines a dimension
    and can take a real value
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 14

    View Slide

  40. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Can we characterize tonal maps as being feasibly learnable?
    Figure: Map in a 3-D parameter space
    In phonetic space: each
    parameter defines a dimension
    and can take a real value
    Potentially an infinite number
    of parameters, each with a
    potentially infinite range of
    possible values
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 14

    View Slide

  41. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Phonological maps are non recursively-enumerable
    Phonological maps are defined over real-valued parameters
    Reg CF
    Fin non!RE
    RE
    CS
    MG
    Figure: The Chomsky hierarchy of formal languages
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 15

    View Slide

  42. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Structure permits feasible learning even in infinite spaces
    But comfort from the finiteness of the space of
    possible grammars is tenuous indeed. For a
    grammatical theory with an infinite number of possible
    grammars might be well structured, permitting informed
    search that converges quickly to the correct
    grammar—even though uninformed, exhaustive search is
    infeasible. And it is of little value that exhaustive search is
    guaranteed to terminate eventually when the space of
    possible grammars is finite, if the number of grammars is
    astronomical. In fact, a well-structured theory
    admitting an infinity of grammars could well be
    feasibly learnable, while a poorly structured theory
    admitting a finite, but very large, number of possible
    grammars might not.
    (Tesar and Smolensky 2000: 3)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 16

    View Slide

  43. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Structure permits feasible learning even in infinite spaces
    This talk: don’t panic!
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 16

    View Slide

  44. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Can we characterize tonal maps as being feasibly learnable?
    Figure: Map in a 3-D parameter space
    In phonetic space: each
    parameter defines a dimension
    and can take a real value
    Potentially an infinite number
    of parameters, each with a
    potentially infinite range of
    possible values
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 17

    View Slide

  45. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Can we characterize tonal maps as being feasibly learnable?
    Figure: Scary map in a 2-D parameter space
    (Miller 1989)
    In phonetic space: each
    parameter defines a dimension
    and can take a real value
    Potentially an infinite number
    of parameters, each with a
    potentially infinite range of
    possible values
    Complex shapes/distributions
    can make maps in even 2-D
    spaces not feasibly learnable
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 17

    View Slide

  46. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Can we characterize tonal maps as being feasibly learnable?
    Figure: Scary map in a 2-D parameter space
    (Miller 1989)
    In phonetic space: each
    parameter defines a dimension
    and can take a real value
    Potentially an infinite number
    of parameters, each with a
    potentially infinite range of
    possible values
    Complex shapes/distributions
    can make maps in even 2-D
    spaces not feasibly learnable
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 17

    View Slide

  47. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Can we characterize tonal maps as being feasibly learnable?
    Figure: Scary map in a 2-D parameter space
    (Miller 1989)
    In phonetic space: each
    parameter defines a dimension
    and can take a real value
    Potentially an infinite number
    of parameters, each with a
    potentially infinite range of
    possible values
    Complex shapes/distributions
    can make maps in even 2-D
    spaces not feasibly learnable
    ⇒ there must exist inductive
    biases to constrain the
    hypothesis space
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 17

    View Slide

  48. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Inductive biases for learning phonological categories
    The modeler (and learner?) must start with a finite set of
    parameters for parameterizing the speech signal
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 18

    View Slide

  49. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Inductive biases for learning phonological categories
    The modeler (and learner?) must start with a finite set of
    parameters for parameterizing the speech signal
    Any results on learning and observations about
    shapes/distributions are conditioned on that
    parameterization
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 18

    View Slide

  50. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Inductive biases for learning phonological categories
    The modeler (and learner?) must start with a finite set of
    parameters for parameterizing the speech signal
    Any results on learning and observations about
    shapes/distributions are conditioned on that
    parameterization
    How to decide on parameters?
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 18

    View Slide

  51. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Inductive biases for learning phonological categories
    The modeler (and learner?) must start with a finite set of
    parameters for parameterizing the speech signal
    Any results on learning and observations about
    shapes/distributions are conditioned on that
    parameterization
    How to decide on parameters?
    A lower bound: parameters that yield well-separated tonal
    categories in acoustic and perceptual spaces in any tonal
    language
    ⇒ Need for cross-linguistic language sample
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 18

    View Slide

  52. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Defining tonal maps
    The learnability of tonal maps
    Inductive biases for learning phonological categories
    The modeler (and learner?) must start with a finite set of
    parameters for parameterizing the speech signal
    Any results on learning and observations about
    shapes/distributions are conditioned on that
    parameterization
    How to decide on parameters?
    A lower bound: parameters that yield well-separated tonal
    categories in acoustic and perceptual spaces in any tonal
    language
    ⇒ Need for cross-linguistic language sample
    Can only guess based on computational modeling (category
    separability) and psychological experimentation (human
    perception)
    ⇒ Need for interplay of computational modeling and
    psychological experimentation
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 18

    View Slide

  53. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Cross-linguistic tonal language sample
    Language Area Tonal inventory
    Bole Nigeria
    Ă
    £, Ă£ (H,L)
    Mandarin Beijing
    Ă
    £, Ę£, ŁŘ£, Ď£
    Cantonese Hong Kong
    Ă
    £,
    Ă
    £, Ă£, Ą£, Ę£, Ę£
    Hmong Laos/Thailand
    Ă
    £, Ă£, Ă£, Č£, Ć£, Ą£, Ę£
    Languages chosen for diversity in level/contour distinctions
    and voice quality contrasts
    Multiple speakers (6M/6F for all but Bole (3M/2F))
    All legal bitone combinations recorded sentence-medially
    Data collection from additional languages always in progress
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 19

    View Slide

  54. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Cross-linguistic tonal language sample
    Language Area Tonal inventory
    Bole Nigeria
    Ă
    £, Ă£ (H,L)
    Mandarin Beijing
    Ă
    £, Ę£, ŁŘ£, Ď£
    Cantonese Hong Kong
    Ă
    £,
    Ă
    £, Ă£, Ą£, Ę£, Ę£
    Hmong Laos/Thailand
    Ă
    £, Ă£, Ă£, Č£, Ć£, Ą£, Ę£
    Languages chosen for diversity in level/contour distinctions
    and voice quality contrasts
    Multiple speakers (6M/6F for all but Bole (3M/2F))
    All legal bitone combinations recorded sentence-medially
    Data collection from additional languages always in progress
    Perception experiments done in Cantonese
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 19

    View Slide

  55. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Inductive biases for learning tonal categories
    Is onset and offset f0 sufficient for defining tonal spaces?
    1 The role of (phonetic) context
    2 A lack of simple f0 universal invariants
    3 Voice quality parameters beyond f0
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 20

    View Slide

  56. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Inductive biases for learning tonal categories
    Is onset and offset f0 sufficient for defining tonal spaces?
    1 The role of (phonetic) context
    2 A lack of simple f0 universal invariants
    3 Voice quality parameters beyond f0
    Structure in the hypothesis space
    1 Coarse-grained temporal resolution
    2 Initial thoughts on category shapes/distributions
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 20

    View Slide

  57. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    f0 is not a single dimension
    . . .tones typically involve a single primary acoustic
    dimension, namely, f0. This contrasts with the multiple
    acoustic dimensions such as formants or spectral peaks
    required for characterizing vowels and consonants. The
    variability problem with tones is therefore at least
    limited to a single dimension. . .
    (Gauthier et al. 2007)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 21

    View Slide

  58. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    f0 is not a single dimension
    . . .tones typically involve a single primary acoustic
    dimension, namely, f0. This contrasts with the multiple
    acoustic dimensions such as formants or spectral peaks
    required for characterizing vowels and consonants. The
    variability problem with tones is therefore at least
    limited to a single dimension. . .
    (Gauthier et al. 2007)
    Assertion: f0 is a set of acoustic dimensions
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 21

    View Slide

  59. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    f0 is not a single dimension
    . . .tones typically involve a single primary acoustic
    dimension, namely, f0. This contrasts with the multiple
    acoustic dimensions such as formants or spectral peaks
    required for characterizing vowels and consonants. The
    variability problem with tones is therefore at least
    limited to a single dimension. . .
    (Gauthier et al. 2007)
    Assertion: f0 is a set of acoustic dimensions
    Temporal domain: how much context?
    Parameterization: f0, f0 velocity, polynomial coefficients, . . .
    Temporal resolution: how many samples of a parameter?
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 21

    View Slide

  60. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Temporal domain: how much phonetic context?
    Modeling phonological learning: just the associated syllable
    Gauthier et al. (2007) for Mandarin tones and all other
    phonological learning studies (de Boer and Kuhl 2003, Vallabha
    et al. 2007, i.a.)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 22

    View Slide

  61. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Temporal domain: how much phonetic context?
    Context beyond syllable
    Speech perception: mostly work on effect of preceding context
    in vowels (Ladefoged and Broadbent (1980), for level tones
    (Wong and Diehl 2003) contour tones (Huang and Holt 2009),
    minimal work on following context
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 22

    View Slide

  62. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Temporal domain: how much phonetic context?
    Context beyond syllable
    Speech perception: mostly work on effect of preceding context
    in vowels (Ladefoged and Broadbent (1980), for level tones
    (Wong and Diehl 2003) contour tones (Huang and Holt 2009),
    minimal work on following context
    Peak delay (Silverman & Pierrehumbert 1990, Myers 1999)
    suggests role for following context in tonal perception
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 22

    View Slide

  63. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Temporal domain: how much phonetic context?
    Context beyond syllable
    Speech perception: mostly work on effect of preceding context
    in vowels (Ladefoged and Broadbent (1980), for level tones
    (Wong and Diehl 2003) contour tones (Huang and Holt 2009),
    minimal work on following context
    Automatic tonal recognition
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 22

    View Slide

  64. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Temporal domain: how much phonetic context?
    Context beyond syllable
    Speech perception: mostly work on effect of preceding context
    in vowels (Ladefoged and Broadbent (1980), for level tones
    (Wong and Diehl 2003) contour tones (Huang and Holt 2009),
    minimal work on following context
    Automatic tonal recognition
    Acoustic parameters from preceding and following syllables:
    Qian et al. (2007), Levow (2006), Zhang et al. (2005)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 22

    View Slide

  65. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Temporal domain: how much phonetic context?
    Context beyond syllable
    Speech perception: mostly work on effect of preceding context
    in vowels (Ladefoged and Broadbent (1980), for level tones
    (Wong and Diehl 2003) contour tones (Huang and Holt 2009),
    minimal work on following context
    Automatic tonal recognition
    Acoustic parameters from preceding and following syllables:
    Qian et al. (2007), Levow (2006), Zhang et al. (2005)
    Hypothesis: Following context can be important for good tonal
    category separability.
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 22

    View Slide

  66. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Human perception experiments: stimuli
    Cantonese tritones: nonce 3-syllable phrases built from syllables
    in the lexicon
    First and third syllables held fixed:
    < waiĂ£, {wai
    Ă
    £, Ę£,
    Ă
    £, Ą£, Ę£, Ă£}, matĂ£ >
    Tritone Gloss
    < waiĂ£, wai
    Ă
    £, matĂ£ > fear power clean
    < waiĂ£, waiĘ£, matĂ£ > fear appoint clean
    < waiĂ£, wai
    Ă
    £, matĂ£ > fear fear clean
    < waiĂ£, waiĄ£, matĂ£ > fear surround clean
    < waiĂ£, waiĘ£, matĂ£ > fear great clean
    < waiĂ£, waiĂ£, matĂ£ > fear stomach clean
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 23

    View Slide

  67. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Human perception experiments: stimuli
    Cantonese tritones: nonce 3-syllable phrases built from syllables
    in the lexicon
    First and third syllables held fixed:
    < waiĂ£, {wai
    Ă
    £, Ę£,
    Ă
    £, Ą£, Ę£, Ă£}, matĂ£ >
    Tritone Gloss
    < waiĂ£, wai
    Ă
    £, matĂ£ > fear power clean
    < waiĂ£, waiĘ£, matĂ£ > fear appoint clean
    < waiĂ£, wai
    Ă
    £, matĂ£ > fear fear clean
    < waiĂ£, waiĄ£, matĂ£ > fear surround clean
    < waiĂ£, waiĘ£, matĂ£ > fear great clean
    < waiĂ£, waiĂ£, matĂ£ > fear stomach clean
    Syllables identified with orthographic characters
    Some characters may be more frequent than others:
    Ę£ > Ą£ >
    Ă
    £ >> Ę£ >
    Ă
    £, Ă£ (based on corpus count of Mandarin
    cognates, Da (2004)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 23

    View Slide

  68. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Human perception experiment: contextual information
    Stimuli: Cantonese citation tones and parts of tritones,
    < waiĂ£, {wai
    Ă
    £, Ę£,
    Ă
    £, Ą£, Ę£, Ă£}, matĂ£ > from 5 speakers (3M, 2F)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 24

    View Slide

  69. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Human perception experiment: contextual information
    Stimuli: Cantonese citation tones and parts of tritones,
    < waiĂ£, {wai
    Ă
    £, Ę£,
    Ă
    £, Ą£, Ę£, Ă£}, matĂ£ > from 5 speakers (3M, 2F)
    Methodological inspiration: Perceptual normalization studies
    (Ladefoged and Broadbent (1957), Wong and Diehl (2003));
    Manipulated variable: context
    (mono, pre, post, tri, isolation)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 24

    View Slide

  70. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Human perception experiment: contextual information
    Stimuli: Cantonese citation tones and parts of tritones,
    < waiĂ£, {wai
    Ă
    £, Ę£,
    Ă
    £, Ą£, Ę£, Ă£}, matĂ£ > from 5 speakers (3M, 2F)
    Methodological inspiration: Perceptual normalization studies
    (Ladefoged and Broadbent (1957), Wong and Diehl (2003));
    Manipulated variable: context
    (mono, pre, post, tri, isolation)
    Task: 6-alternative forced choice orthographic identification of
    target tone
    Participants: 36 native Cantonese speakers, tested in Hong
    Kong and Los Angeles
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 24

    View Slide

  71. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Acoustic stimuli: Manipulation of context
    Time (s)
    log f0/[Hz]
    4.2
    4.4
    4.6
    4.8
    5.0
    5.2
    5.4
    4.2
    4.4
    4.6
    4.8
    5.0
    5.2
    5.4
    55
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    q
    q
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    q
    q
    qqq
    qq
    q
    qq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qqq
    q
    q
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    q
    qq
    qq
    q
    q
    q
    q
    q
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    qq
    qqq
    qq
    qqq
    qq
    qq
    q
    qq
    qqq
    qqq
    q
    q
    qq
    q
    q
    q
    qqq
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    21
    q
    qq
    qq
    q
    qq
    qqq
    qq
    qq
    q
    qq
    qqq
    qq
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    q
    q
    qqq
    qq
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qq
    q
    q
    q
    q
    qq
    q
    q
    qq
    q
    q
    q
    q
    qq
    qq
    qqq
    qq
    q
    qq
    qqq
    q
    q
    qq
    q
    qq
    qqq
    qq
    qqq
    qq
    q
    qq
    qqq
    q
    q
    q
    q
    q
    qq
    qqq
    qq
    qqq
    qq
    qq
    q
    qq
    q
    qq
    q
    qq
    qq
    qq
    q
    q
    q
    qqq
    qq
    qqq
    qq
    qqq
    qqq
    qq
    qq
    q
    qq
    qq
    q
    qq
    qqq
    qq
    qq
    q
    qqq
    qq
    qqq
    qq
    qqq
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    0.2 0.4 0.6
    25
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    q
    q
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qq
    q
    q
    q
    qq
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qqq
    qq
    q
    qq
    qq
    qqq
    qq
    qqq
    qq
    q
    q
    q
    qq
    q
    qq
    q
    qq
    q
    q
    qqq
    qq
    qqq
    qq
    qqq
    q
    q
    qq
    q
    q
    q
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    q
    q
    q
    q
    q
    qq
    qqq
    qq
    qq
    q
    qq
    qq
    q
    q
    q
    q
    qq
    q
    qq
    q
    q
    q
    qq
    qq
    q
    qq
    qq
    qqq
    qq
    q
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    23
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    qq
    qqq
    qq
    q
    qq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qq
    q
    qq
    qqq
    qqq
    qq
    q
    q
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qqq
    qq
    qq
    q
    q
    q
    qqq
    qq
    qqq
    q
    q
    qqq
    qq
    qq
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    q
    q
    qq
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    qq
    qqq
    q
    q
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    0.2 0.4 0.6
    33
    qqq
    qq
    q
    qq
    qq
    qqq
    qq
    qqq
    qqq
    qq
    q
    qq
    q
    q
    qqq
    qq
    qqq
    qq
    qqq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    qq
    q
    qq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qqq
    q
    q
    qqq
    qq
    q
    qq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    qq
    q
    qq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    22
    q
    q
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qqq
    qq
    q
    q
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qqq
    q
    q
    q
    qq
    qq
    q
    qq
    qq
    qqq
    qq
    qqq
    qqq
    qq
    q
    qq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    qq
    qq
    q
    qq
    qqq
    qq
    qqq
    qq
    qqq
    qq
    q
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    MONO
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    PRE
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    POST
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    TRI
    0.2 0.4 0.6
    Speaker
    q
    q
    q
    f4 f3 m6 m1 m5
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 25

    View Slide

  72. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Human perception: following context helps separate rise
    Time (s)
    log f0/[Hz]
    4.8
    4.9
    5.0
    5.1
    5.2
    5.3
    5.4
    PRE−TARGET
    TARGET
    TRITONE
    POST−TARGET
    ISOLATION
    0.1 0.2 0.3 0.4 0.5 0.6
    Tone
    25
    23
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 26

    View Slide

  73. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Human perception: following context helps separate rise
    Tone
    Percent of correct responses
    0
    20
    40
    60
    80
    55 25 33 21 23 22
    Context
    mono
    pre
    post
    tri
    iso
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 26

    View Slide

  74. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Human perception: following context helps separate rise
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 26

    View Slide

  75. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational modeling for insight into experiment
    What were listeners listening to?
    Effects of particular task/stimuli?
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 27

    View Slide

  76. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational modeling for insight into experiment
    What were listeners listening to?
    Effects of particular task/stimuli?
    Computational modeling allows explicit and tradeable
    assumptions.
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 27

    View Slide

  77. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational modeling for insight into experiment
    What were listeners listening to?
    Effects of particular task/stimuli?
    Computational modeling allows explicit and tradeable
    assumptions.
    Assume: mean f0 values extracted from each sample, for 2-7
    samples per syllable
    Extracted using implementation of RAPT pitch tracker (Talkin
    1995)
    Assume: no lexical bias
    Uniform prior (all tonal categories equally likely)
    Ask: How accurate is tonal identification by machine?
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 27

    View Slide

  78. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational modeling: parameterization of data
    sample
    log f0/[Hz]
    4.4
    4.6
    4.8
    5.0
    5.2
    5.4
    4.4
    4.6
    4.8
    5.0
    5.2
    5.4
    55
    q q q
    q
    q
    q
    q
    q
    q
    q
    q q
    q
    q q q
    q
    q
    q
    q q
    q
    q
    q q
    q
    q
    21
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q q
    q
    q
    q
    q
    q
    q q
    q
    q
    q
    q
    q
    q
    q
    2 4 6 8
    25
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q q
    q
    q
    q
    q
    q
    q
    q q
    q q
    q
    q
    q
    q
    23
    q
    q q
    q q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q q
    2 4 6 8
    33
    q q
    q q q
    q
    q q q q q
    q q
    q
    q
    q
    q
    q q q
    q
    q
    q q q q
    q
    22
    q q
    q
    q q q
    q q q
    q
    q
    q
    q q
    q
    q q q
    q
    q q
    q q q q q q
    2 4 6 8
    speaker
    q f4
    f3
    m6
    m1
    m5
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 28

    View Slide

  79. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational modeling: parameterization of data
    sample
    log f0/[Hz]
    4.4
    4.6
    4.8
    5.0
    5.2
    5.4
    4.4
    4.6
    4.8
    5.0
    5.2
    5.4
    55
    q q q
    q
    q
    q
    q
    q
    q
    q
    q q
    q
    q q q
    q
    q
    q
    q q
    q
    q
    q q
    q
    q
    21
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q q
    q
    q
    q
    q
    q
    q q
    q
    q
    q
    q
    q
    q
    q
    2 4 6 8
    25
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q q
    q
    q
    q
    q
    q
    q
    q q
    q q
    q
    q
    q
    q
    23
    q
    q q
    q q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q q
    2 4 6 8
    33
    q q
    q q q
    q
    q q q q q
    q q
    q
    q
    q
    q
    q q q
    q
    q
    q q q q
    q
    22
    q q
    q
    q q q
    q q q
    q
    q
    q
    q q
    q
    q q q
    q
    q q
    q q q q q q
    2 4 6 8
    speaker
    q f4
    f3
    m6
    m1
    m5
    Standardized data:
    per-speaker z-scores
    for log transformed f0
    values (Levow 2006)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 28

    View Slide

  80. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational modeling: support vector machines
    Bennett and Bredensteiner (2000), Vapnik (1995)
    1 Given labeled training data,
    e.g. << 200, 210, 224 >,
    Ă
    £ >
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 29

    View Slide

  81. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational modeling: support vector machines
    Bennett and Bredensteiner (2000), Vapnik (1995)
    1 Given labeled training data,
    e.g. << 200, 210, 224 >,
    Ă
    £ >
    2 Draw convex hull around
    data from a given category
    3 Find separating hyperplane
    maximizing margin between
    convex hulls
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 29

    View Slide

  82. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational modeling: support vector machines
    Bennett and Bredensteiner (2000), Vapnik (1995)
    1 Given labeled training data,
    e.g. << 200, 210, 224 >,
    Ă
    £ >
    2 Draw convex hull around
    data from a given category
    3 Find separating hyperplane
    maximizing margin between
    convex hulls
    4 Use separating hyperplane to
    classify test data (unseen
    data): train on 4 speakers,
    test on 5th, average results
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 29

    View Slide

  83. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational modeling: higher weight to post-target
    syllable f0 values for separating rises
    Hyperplane influenced more by post than pre-target f0
    Syllable
    Mean primal weight over speaker folds
    −0.4
    −0.2
    0.0
    0.2
    0.4
    0.6
    0.8
    −0.5
    0.0
    0.5
    1.0
    −1.0
    −0.5
    0.0
    0.5
    1.0
    1.5
    55 vs 25
    q
    q
    q
    q
    q
    pre tarpost
    25 vs 33
    q
    q
    q
    q
    q
    pre tarpost
    33 vs 23
    q
    q
    q
    q
    q
    pre tarpost
    −0.5
    0.0
    0.5
    1.0
    −0.5
    0.0
    0.5
    1.0
    −1.0
    −0.5
    0.0
    0.5
    1.0
    1.5
    55 vs 33
    q
    q
    q
    q
    q
    pre tarpost
    25 vs 21
    q
    q
    q
    q
    q
    pre tarpost
    33 vs 22
    q
    q
    q
    q
    q
    pre tarpost
    0.0
    0.2
    0.4
    0.6
    −1
    0
    1
    2
    −2
    −1
    0
    1
    2
    55 vs 21
    q
    q
    q
    q
    q
    pre tarpost
    25 vs 23
    q
    q
    q
    q
    q
    pre tarpost
    21 vs 23
    q
    q
    q
    q
    q
    pre tarpost
    −0.2
    0.0
    0.2
    0.4
    0.6
    −0.5
    0.0
    0.5
    1.0
    −2
    −1
    0
    1
    55 vs 23
    q
    q
    q
    q
    q
    pre tarpost
    25 vs 22
    q
    q
    q
    q
    q
    pre tarpost
    21 vs 22
    q
    q
    q
    q
    q
    pre tarpost
    −0.1
    0.0
    0.1
    0.2
    0.3
    0.4
    0.5
    −0.5
    0.0
    0.5
    1.0
    1.5
    −2
    0
    2
    4
    55 vs 22
    q
    q
    q
    q
    q
    pre tarpost
    33 vs 21
    q
    q
    q
    q
    q
    pre tarpost
    23 vs 22
    q
    q
    q
    q
    q
    pre tarpost
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 30

    View Slide

  84. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational modeling: higher weight to post-target
    syllable f0 values for separating rises
    Hyperplane influenced more by post than pre-target f0
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 30

    View Slide

  85. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Local summary: temporal domain
    Cantonese listeners benefit from having preceding and
    following context available in tonal identification
    Following context is especially informative for separating out the
    Tone 25 rise, as shown in listener performance and by
    computational modeling
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 31

    View Slide

  86. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Local summary: temporal domain
    Cantonese listeners benefit from having preceding and
    following context available in tonal identification
    Following context is especially informative for separating out the
    Tone 25 rise, as shown in listener performance and by
    computational modeling
    Temporal domain may extend beyond associated syllable in
    both directions
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 31

    View Slide

  87. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Parameterization: f0 and f0 velocity (I)
    Gauthier et al. (2007): Computational simulations on learning
    Mandarin tones: better categorization performance with f0
    velocity alone than f0 height alone
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 32

    View Slide

  88. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Parameterization: f0 and f0 velocity (I)
    Gauthier et al. (2007): Computational simulations on learning
    Mandarin tones: better categorization performance with f0
    velocity alone than f0 height alone
    Strong hypothesis: f0 velocity is a sufficient acoustic cue
    for good category separability of lexical tones for all tone
    languages
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 32

    View Slide

  89. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Parameterization: f0 and f0 velocity (I)
    Gauthier et al. (2007): Computational simulations on learning
    Mandarin tones: better categorization performance with f0
    velocity alone than f0 height alone
    Strong hypothesis: f0 velocity is a sufficient acoustic cue
    for good category separability of lexical tones for all tone
    languages
    ⇒ To test: Cross-linguistic tonal production data
    Natural test case: languages with level tonal contrasts
    Methods: very difficult to test using psychological
    experimentation ⇒ rely on computational modeling
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 32

    View Slide

  90. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Parameterization: f0 and f0 velocity (II)
    Level and rise Rise and fall Two rises Two levels
    Time
    f0
    Time
    f0 velocity
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 33

    View Slide

  91. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Parameterization: f0 and f0 velocity (II)
    Level and rise Rise and fall Two rises Two levels
    Time
    f0
    Time
    f0
    Time
    f0 velocity
    Time
    f0 velocity
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 33

    View Slide

  92. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Parameterization: f0 and f0 velocity (II)
    Level and rise Rise and fall Two rises Two levels
    Time
    f0
    Time
    f0
    Time
    f0
    Time
    f0 velocity
    Time
    f0 velocity
    Time
    f0 velocity
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 33

    View Slide

  93. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Parameterization: f0 and f0 velocity (II)
    Level and rise Rise and fall Two rises Two levels
    Time
    f0
    Time
    f0
    Time
    f0
    Time
    f0
    Time
    f0 velocity
    Time
    f0 velocity
    Time
    f0 velocity
    Time
    f0 velocity
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 33

    View Slide

  94. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Level tone languages have contours too (Bole)
    `
    an`
    ın
    LL

    em`
    a
    HL

    eng`
    o
    HL
    ‘The owners of prosperity came back’
    Time (s)
    0 1.003
    Pitch (Hz)
    50
    150
    L L H L H L
    Time (s)
    0 1.003
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 34

    View Slide

  95. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Linear discriminant analysis for dimensionality reduction
    Don’t project there! Project here!
    (Hastie, Tibshirani, and Friedman 2009)
    Project onto axis to maximize ratio of between-class to
    within-class scatter
    Between-class scatter: roughly, distance between class means
    Within-class scatter: class variances
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 35

    View Slide

  96. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Better separability of H/L in Bole with f0 velocity than f0
    for syllable averages
    log mean f0
    Density
    0.000
    0.005
    0.010
    0.015
    0.020
    0.025
    0.030
    0.035
    110 120 130 140 150 160 170
    tone
    H
    L
    Bole: mean log f0
    f0 change between 2 uniform f0 samples
    Density
    0.00
    0.01
    0.02
    0.03
    0.04
    0.05
    0.06
    −40 −20 0 20 40
    tone
    H
    L
    Bole: mean f0 change
    Possible to have separability better with f0 velocity alone than
    f0 alone in Bole if 1 real value
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 36

    View Slide

  97. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    But f0 velocity alone can’t separate level tone contrasts in
    Cantonese, Hmong
    Hmong: log f0, 10 values Hmong: f0 change, 10 values
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 37

    View Slide

  98. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Summary: beyond 2-D tonal spaces
    What have we learned about the learner’s predicament so far?
    Temporal domain beyond associated syllable is a source of some
    dimensionality
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 38

    View Slide

  99. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Summary: beyond 2-D tonal spaces
    What have we learned about the learner’s predicament so far?
    Temporal domain beyond associated syllable is a source of some
    dimensionality
    No simple invariant f0 parameter set: just f0 or just f0 velocity
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 38

    View Slide

  100. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Parameterization: voice quality parameters beyond f0
    f0-related parameters are a subset of voice quality parameters
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 39

    View Slide

  101. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Parameterization: voice quality parameters beyond f0
    f0-related parameters are a subset of voice quality parameters
    Existence of languages with tonal contrasts cued by phonation
    contrasts (e.g. Hmong, Vietnamese) ⇒ tonal space must
    include voice quality parameters beyond f0
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 39

    View Slide

  102. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Parameterization: voice quality parameters beyond f0
    f0-related parameters are a subset of voice quality parameters
    Existence of languages with tonal contrasts cued by phonation
    contrasts (e.g. Hmong, Vietnamese) ⇒ tonal space must
    include voice quality parameters beyond f0
    What about tonal languages without contrastive phonation?
    Cantonese tonal perception: listeners are sensitive to presence of
    creak and creak can increase tonal identification accuracy (Lam
    and Yu 2010, Yu and Lam 2011)
    Result: Even in tonal languages without contrastive phonation,
    tonal space must include voice quality parameters beyond f0
    values.
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 39

    View Slide

  103. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Summary: beyond 2-D tonal spaces
    What have we learned about the learner’s predicament so far?
    Temporal domain beyond associated syllable is a source of some
    dimensionality
    No simple invariant f0 parameter set: just f0 or just f0 velocity
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 40

    View Slide

  104. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Summary: beyond 2-D tonal spaces
    What have we learned about the learner’s predicament so far?
    Temporal domain beyond associated syllable is a source of some
    dimensionality
    No simple invariant f0 parameter set: just f0 or just f0 velocity
    Learner must consider other voice quality parameters than
    just idealized f0 values in a wide range of tone languages
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 40

    View Slide

  105. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Temporal resolution: how many samples? (I)
    Dense sampling Coarse sampling
    Time
    f0
    q q q q q q q q q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    Time
    f0
    q
    q
    q
    q
    Each sampled point could contribute to complexity in tonal map!
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 41

    View Slide

  106. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Temporal resolution: how many samples? (II)
    Dense sampling
    Gauthier et al. (2007): 30 samples/syllable (1 sample/6 ms)
    Automatic speech recognition: 1 sample/10 ms
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 42

    View Slide

  107. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Temporal resolution: how many samples? (II)
    Dense sampling
    Gauthier et al. (2007): 30 samples/syllable (1 sample/6 ms)
    Automatic speech recognition: 1 sample/10 ms
    Coarse sampling
    Linguistics: Chao (1933, 1968), International Phonetic Alphabet
    Ă
    £,Ę£,ŁŘ£,Ď£, 3 samples/tone
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 42

    View Slide

  108. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Temporal resolution: how many samples? (II)
    Dense sampling
    Gauthier et al. (2007): 30 samples/syllable (1 sample/6 ms)
    Automatic speech recognition: 1 sample/10 ms
    Coarse sampling
    Linguistics: Chao (1933, 1968), International Phonetic Alphabet
    Ă
    £,Ę£,ŁŘ£,Ď£, 3 samples/tone
    Automatic speech recognition
    3 - 5 samples/tone: Qian et al. (2007): Cantonese; Wang and
    Levow (2008), Zhou et al. (2008): Mandarin
    Tian et al. (2004): Higher tonal ID accuracy with 4
    samples/tone than 1 sample/10 ms (Mandarin)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 42

    View Slide

  109. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Temporal resolution: how many samples? (II)
    Dense sampling
    Gauthier et al. (2007): 30 samples/syllable (1 sample/6 ms)
    Automatic speech recognition: 1 sample/10 ms
    Coarse sampling
    Linguistics: Chao (1933, 1968), International Phonetic Alphabet
    Ă
    £,Ę£,ŁŘ£,Ď£, 3 samples/tone
    Automatic speech recognition
    3 - 5 samples/tone: Qian et al. (2007): Cantonese; Wang and
    Levow (2008), Zhou et al. (2008): Mandarin
    Tian et al. (2004): Higher tonal ID accuracy with 4
    samples/tone than 1 sample/10 ms (Mandarin)
    Hypothesis: Good tonal category separability can be maintained
    under coarse temporal sampling of phonetic parameters.
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 42

    View Slide

  110. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Human perception experiment
    Stimuli: Cantonese tritones,
    < waiĂ£, {wai
    Ă
    £, Ę£,
    Ă
    £, Ą£, Ę£, Ă£}, matĂ£ > from 5 speakers (3M, 2F)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 43

    View Slide

  111. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Human perception experiment
    Stimuli: Cantonese tritones,
    < waiĂ£, {wai
    Ă
    £, Ę£,
    Ă
    £, Ą£, Ę£, Ă£}, matĂ£ > from 5 speakers (3M, 2F)
    Methodological inspiration: Multiple phoneme restoration in
    interrupted speech (Warren 1970)
    Manipulated variable: sampling resolution
    (2, 3, 5, 7 samples/syllable, intact)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 43

    View Slide

  112. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Human perception experiment
    Stimuli: Cantonese tritones,
    < waiĂ£, {wai
    Ă
    £, Ę£,
    Ă
    £, Ą£, Ę£, Ă£}, matĂ£ > from 5 speakers (3M, 2F)
    Methodological inspiration: Multiple phoneme restoration in
    interrupted speech (Warren 1970)
    Manipulated variable: sampling resolution
    (2, 3, 5, 7 samples/syllable, intact)
    Task: 6-alternative forced choice orthographic identification of
    second tone in tritone
    Participants: 39 native Cantonese speakers, tested in Hong
    Kong and Los Angeles
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 43

    View Slide

  113. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Stimuli example: waveform/spectrogram
    [Intact tritone]
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 44

    View Slide

  114. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Stimuli example: waveform/spectrogram
    [7 samples per syllable]
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 45

    View Slide

  115. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Stimuli example: waveform/spectrogram
    [5 samples per syllable]
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 46

    View Slide

  116. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Stimuli example: waveform/spectrogram
    [3 samples per syllable]
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 47

    View Slide

  117. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Stimuli example: waveform/spectrogram
    [2 samples per syllable]
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 48

    View Slide

  118. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Tonal ID accuracy maintained with coarse resolution
    Tonal ID accuracy well above chance
    even down to 2 samples/syllable!
    Resolution
    Percent of correct responses
    0
    10
    20
    30
    40
    50
    60
    70
    samp2 samp3 samp5 samp7 intact
    Resolution Percent correct
    samp2 52.54 (2.41)
    samp3 60.51 (2.76)
    samp5 64.13 (2.83)
    samp7 66.38 (2.91)
    intact 67.46 (2.90)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 49

    View Slide

  119. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Tonal ID accuracy maintained with coarse resolution
    Tonal ID accuracy well above chance
    even down to 2 samples/syllable!
    Resolution
    Percent of correct responses
    0
    10
    20
    30
    40
    50
    60
    70
    samp2 samp3 samp5 samp7 intact
    Resolution Percent correct
    samp2 52.54 (2.41)
    samp3 60.51 (2.76)
    samp5 64.13 (2.83)
    samp7 66.38 (2.91)
    intact 67.46 (2.90)
    SVM classification
    accuracy ≈75% for all
    conditions
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 49

    View Slide

  120. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Tonal ID accuracy maintained with coarse resolution
    Tonal ID accuracy well above chance
    even down to 2 samples/syllable!
    Resolution
    Percent of correct responses
    0
    10
    20
    30
    40
    50
    60
    70
    samp2 samp3 samp5 samp7 intact
    Resolution Percent correct
    samp2 52.54 (2.41)
    samp3 60.51 (2.76)
    samp5 64.13 (2.83)
    samp7 66.38 (2.91)
    intact 67.46 (2.90)
    SVM classification
    accuracy ≈75% for all
    conditions
    Accuracy with as few
    as 6 real values not
    statistically different
    from accuracy with 69
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 49

    View Slide

  121. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Cross-linguistic computational modeling for sampling
    resolution example: Bole, log f0 values
    Linear discriminant 1, 2 f0 samples
    Density
    0.0
    0.1
    0.2
    0.3
    0.4
    0.5
    0.6
    0.7
    −2 0 2 4
    tone
    H
    L
    2 log f0 values
    Linear discriminant 1, 3 f0 samples
    Density
    0.0
    0.1
    0.2
    0.3
    0.4
    0.5
    0.6
    −2 0 2 4
    tone
    H
    L
    3 log f0 values
    Linear discriminant 1, 10 f0 samples
    Density
    0.0
    0.1
    0.2
    0.3
    0.4
    0.5
    0.6
    0.7
    −2 0 2 4
    tone
    H
    L
    10 log f0 values
    Little difference in overlap between H/L
    from 2 to 10 f0 samples
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 50

    View Slide

  122. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Local summary: temporal resolution
    Cantonese listeners maintain tonal ID accuracy under low
    temporal resolution
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 51

    View Slide

  123. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Local summary: temporal resolution
    Cantonese listeners maintain tonal ID accuracy under low
    temporal resolution
    Computational modeling shows that this result can be
    understood given only a minimal acoustic parameterization of
    the speech signal
    Result also holds for computational modeling in other languages
    studied
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 51

    View Slide

  124. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Local summary: temporal resolution
    Cantonese listeners maintain tonal ID accuracy under low
    temporal resolution
    Computational modeling shows that this result can be
    understood given only a minimal acoustic parameterization of
    the speech signal
    Result also holds for computational modeling in other languages
    studied
    What about vowels and consonants? Vowels similar situation to
    tones (Strange et al. 1983, Nearey and Assmann 1986,
    Liberman p.c.); “landmarks” for consonants (Stevens 2002)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 51

    View Slide

  125. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Local summary: temporal resolution
    Cantonese listeners maintain tonal ID accuracy under low
    temporal resolution
    Computational modeling shows that this result can be
    understood given only a minimal acoustic parameterization of
    the speech signal
    Result also holds for computational modeling in other languages
    studied
    What about vowels and consonants? Vowels similar situation to
    tones (Strange et al. 1983, Nearey and Assmann 1986,
    Liberman p.c.); “landmarks” for consonants (Stevens 2002)
    Hypothesis: there is structure in the class of
    phonological maps in natural language
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 51

    View Slide

  126. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Local summary
    What have we learned about the learner’s predicament so far?
    Temporal domain beyond associated syllable is a source of some
    dimensionality
    No simple invariant f0 parameter set: just f0 or just f0 velocity
    Learner must consider both information from the speech signal
    and top down information
    Learner must consider other voice quality parameters than just
    idealized f0 values in a wide range of tone languages
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 52

    View Slide

  127. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Local summary
    What have we learned about the learner’s predicament so far?
    Temporal domain beyond associated syllable is a source of some
    dimensionality
    No simple invariant f0 parameter set: just f0 or just f0 velocity
    Learner must consider both information from the speech signal
    and top down information
    Learner must consider other voice quality parameters than just
    idealized f0 values in a wide range of tone languages
    Sufficiency of coarse temporal resolution hints at structure
    in tonal maps
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 52

    View Slide

  128. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Local summary
    What have we learned about the learner’s predicament so far?
    Temporal domain beyond associated syllable is a source of some
    dimensionality
    No simple invariant f0 parameter set: just f0 or just f0 velocity
    Learner must consider both information from the speech signal
    and top down information
    Learner must consider other voice quality parameters than just
    idealized f0 values in a wide range of tone languages
    Sufficiency of coarse temporal resolution hints at structure
    in tonal maps
    Learner must consider both information from the speech signal
    and top down information (Lin 2005, Feldman et al. 2009,
    Yeung and Werker 2009)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 52

    View Slide

  129. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Studying learnability to inform studying learning
    {Phonetic data} Learner





    {Tonal maps}
    Understanding how the hypothesis space is structured
    helps us understand how the learner might proceed
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 53

    View Slide

  130. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational simulations of learning: distributional
    learning
    Studies of phonological category learning use
    Gaussian mixture models
    Figure: Demonstration of
    distributional learning in infants
    (Maye et al. 2002)
    Figure: Some mixtures of two
    Gaussians (Kalai et al. 2010)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 54

    View Slide

  131. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational simulation of learning: example
    −3 −2 −1 0 1 2 3 4
    −3 −2 −1 0 1 2 3
    LD1
    LD1
    Classification
    Figure: The target: Bole H and L
    tones from a single speaker in f0 and
    f0 velocity space
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 55

    View Slide

  132. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational simulation of learning: example
    −3 −2 −1 0 1 2 3 4
    −3 −2 −1 0 1 2 3
    LD1
    LD1
    Classification
    Figure: The target: Bole H and L
    tones from a single speaker in f0 and
    f0 velocity space
    −3 −2 −1 0 1 2 3 4
    −3 −2 −1 0 1 2 3
    LD1
    LD1
    Classification
    Figure: Gaussian mixture clustering
    solution: WRONG!
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 55

    View Slide

  133. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Computational simulation of learning: what went wrong?
    What can we learn from the failure of the learner?
    Is that space a cognitively motivated space?
    Are we missing relevant dimensions?
    Is the learning algorithm exploiting structure in the hypothesis
    space?
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 56

    View Slide

  134. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Conclusions
    Assertions:
    There is structure in the potentially high-dimensional definition
    of phonological maps
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57

    View Slide

  135. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Conclusions
    Assertions:
    There is structure in the potentially high-dimensional definition
    of phonological maps
    To study phonological category learning, we need to understand
    how the hypothesis space is structured
    The structure provides inductive biases for the learner
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57

    View Slide

  136. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Conclusions
    Assertions:
    There is structure in the potentially high-dimensional definition
    of phonological maps
    To study phonological category learning, we need to understand
    how the hypothesis space is structured
    The structure provides inductive biases for the learner
    To characterize structure in the hypothesis space, we need to
    understand what phonetic parameters are involved
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57

    View Slide

  137. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Conclusions
    What have we learned so far about tonal maps?
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57

    View Slide

  138. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Conclusions
    What have we learned so far about tonal maps?
    Temporal window for phonetic parameters larger than
    associated syllable
    Both f0 and f0 change values may contribute in
    parameterization of f0-based information
    Phonetic space includes voice quality parameters beyond f0
    values
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57

    View Slide

  139. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Conclusions
    What have we learned so far about tonal maps?
    Temporal window for phonetic parameters larger than
    associated syllable
    Both f0 and f0 change values may contribute in
    parameterization of f0-based information
    Phonetic space includes voice quality parameters beyond f0
    values
    Sufficiency of coarse temporal resolution is consistent with
    structure in tonal maps
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57

    View Slide

  140. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Conclusions
    What have we learned so far about tonal maps?
    Temporal window for phonetic parameters larger than
    associated syllable
    Both f0 and f0 change values may contribute in
    parameterization of f0-based information
    Phonetic space includes voice quality parameters beyond f0
    values
    Sufficiency of coarse temporal resolution is consistent with
    structure in tonal maps
    Studied tonal maps appear to have nearly linearly
    separable concepts
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57

    View Slide

  141. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Conclusions
    The future: structure in the hypothesis space
    Separability: how well separated? linearly separable?
    Shapes: connected? convex? ellipses?
    Distributions: simple Gaussian mixtures?
    With an understanding of structure in the hypothesis
    space, we can build a cognitively motivated model of
    phonological category acquisition
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 57

    View Slide

  142. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Acknowledgments
    For help with recordings, linguistic consultation:
    Alhaji Maina Gimba and Russell Schuh (Bole)
    Jianjing Kuang (Beijing Mandarin)
    Cindy Chan, Vincie Ho, Hiu Wai Lam, Shing Yin Li, Cedric Loke
    (Cantonese)
    Chou Khang and Phong Yang, CSU Fresno Department of Linguistics
    (Hmong)
    For help with perception experiments, data processing:
    Hiu Wai Lam, Prairie Lam; Cindy Chan, Samantha Chan, Chris Fung, Shing
    Yin Li, Cedric Loke, Antonio Sou, Grace Tsai, Joanna Wang
    For invaluable discussion: Edward Stabler and Megha Sundara; Abeer
    Alwan, Robert Daland, Bruce Hayes, Sun-Ah Jun, Patricia Keating, John
    Kingston, Jody Kreiman, Mark Liberman, Russell Schuh, Colin Wilson, and
    Kie Zuraw; U. Maryland PFNA group
    This work was supported by a NSF graduate fellowship, NSF grant
    BCS-0720304, and a UCLA Linguistics Department Ladefoged scholarship
    and Summer Graduate Research Fellowship
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 58

    View Slide

  143. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Creaky voice in Cantonese tonal perception
    Experiment 1 (Lam and Yu 2010)
    Stimuli: Minimal tone set on
    monosyllable, extracted from
    connected speech (4M/4F)
    Manipulated variable: presence
    of creak in Ą£ (T4)
    Task: 6-alternative forced choice
    orthographic lexical identification
    Participants: 16 native Cantonese
    speakers, tested in Los Angeles
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 59

    View Slide

  144. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Creaky voice in Cantonese tonal perception
    Experiment 1 (Lam and Yu 2010)
    Stimuli: Minimal tone set on
    monosyllable, extracted from
    connected speech (4M/4F)
    Manipulated variable: presence
    of creak in Ą£ (T4)
    Task: 6-alternative forced choice
    orthographic lexical identification
    Participants: 16 native Cantonese
    speakers, tested in Los Angeles
    Experiment 2 (Yu and Lam 2011)
    Stimuli: Mono/bisyllables,
    extracted from connected speech:
    minimal pair (in Ą£ (T4), Ă£),
    (1M/1F)
    Methodological inspiration:
    Contextual normalization of f0
    (Wong and Diehl 2002)
    Manipulated variable: presence
    of creak, f0 shift (8 steps on
    first syllable in bisyllable)
    Task: 2-alternative forced choice
    orthographic lexical identification
    Participants: 20 native Cantonese
    speakers, tested in Hong Kong
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 59

    View Slide

  145. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Experimental results: the role of creaky voice in Cantonese
    tonal perception
    Presence of creak
    Percent of correct responses for T4
    0
    20
    40
    60
    80
    100
    83.11 (2.25)
    58.98 (3.57)
    creak no
    Exp 1: Increase in ID accuracy of T4
    f0 shift (semitones)
    Proportion of T4 responses
    0.2
    0.4
    0.6
    0.8
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q
    q q
    −1 0 1 2
    Voice quality
    q modal
    q creaky
    Exp 2: Bias for T4
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 60

    View Slide

  146. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Difficult to abstract away from phonation in studying tone
    Since we knew we would have to exclude any Tone 3
    productions which had creaky voice, we obtained twice as
    many Tone 3 syllables as the others. (Whalen and Xu
    1992)
    Creaky voice is prevalent in Mandarin ,
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 61

    View Slide

  147. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Difficult to abstract away from phonation in studying tone
    Since we knew we would have to exclude any Tone 3
    productions which had creaky voice, we obtained twice as
    many Tone 3 syllables as the others. (Whalen and Xu
    1992)
    Creaky voice is prevalent in Mandarin ,
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 61

    View Slide

  148. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Confusion matrix for temporal resolution experiment
    (human perception)
    Response frequency percentage
    Response
    22
    23
    21
    33
    25
    55
    22
    23
    21
    33
    25
    55
    22
    23
    21
    33
    25
    55
    22
    23
    21
    33
    25
    55
    22
    23
    21
    33
    25
    55
    samp2, 55
    samp3, 55
    samp5, 55
    samp7, 55
    intact, 55
    20 60 100
    samp2, 25
    samp3, 25
    samp5, 25
    samp7, 25
    intact, 25
    20 60 100
    samp2, 33
    samp3, 33
    samp5, 33
    samp7, 33
    intact, 33
    20 60 100
    samp2, 21
    samp3, 21
    samp5, 21
    samp7, 21
    intact, 21
    20 60 100
    samp2, 23
    samp3, 23
    samp5, 23
    samp7, 23
    intact, 23
    20 60 100
    samp2, 22
    samp3, 22
    samp5, 22
    samp7, 22
    intact, 22
    20 60 100
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 62

    View Slide

  149. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Confusion matrix for temporal resolution experiment
    (human perception)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 62

    View Slide

  150. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Confusion matrix for phonetic context experiment (human
    perception)
    Response frequency percentage
    Response
    22
    23
    21
    33
    25
    55
    22
    23
    21
    33
    25
    55
    22
    23
    21
    33
    25
    55
    22
    23
    21
    33
    25
    55
    22
    23
    21
    33
    25
    55
    mono, 55
    pre, 55
    post, 55
    tri, 55
    iso, 55
    20 60 100
    mono, 25
    pre, 25
    post, 25
    tri, 25
    iso, 25
    20 60 100
    mono, 33
    pre, 33
    post, 33
    tri, 33
    iso, 33
    20 60 100
    mono, 21
    pre, 21
    post, 21
    tri, 21
    iso, 21
    20 60 100
    mono, 23
    pre, 23
    post, 23
    tri, 23
    iso, 23
    20 60 100
    mono, 22
    pre, 22
    post, 22
    tri, 22
    iso, 22
    20 60 100
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 63

    View Slide

  151. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Confusion matrix for phonetic context experiment (human
    perception)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 63

    View Slide

  152. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Vapnik-Chervonenkis dimension: definition by example —
    rays in R

    x
    θ
    rθ = {x ∈ R|θ ≤ x}
    rθ =
    1 if θ ≤ x
    0 otherwise
    r∞ = {} ∀x ∈ R (empty ray)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64

    View Slide

  153. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Vapnik-Chervonenkis dimension: definition by example —
    rays in R
    Given sample S ⊆ R, class of tonal maps T
    if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64

    View Slide

  154. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Vapnik-Chervonenkis dimension: definition by example —
    rays in R
    Given sample S ⊆ R, class of tonal maps T
    if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T

    x
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64

    View Slide

  155. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Vapnik-Chervonenkis dimension: definition by example —
    rays in R
    Given sample S ⊆ R, class of tonal maps T
    if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
    x
    −4 −3 −2 −1 0 1 2 3 4
    S |S| ℘(S) T for T ∩ S Shattered?
    {} 0 {} r∞ Yes
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64

    View Slide

  156. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Vapnik-Chervonenkis dimension: definition by example —
    rays in R
    Given sample S ⊆ R, class of tonal maps T
    if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
    x
    −4 −3 −2 −1 0 1 2 3 4
    S |S| ℘(S) T for T ∩ S Shattered?
    {} 0 {} r∞ Yes
    {1} 1 {}, {1} r∞, rθ≤1 Yes
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64

    View Slide

  157. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Vapnik-Chervonenkis dimension: definition by example —
    rays in R
    Given sample S ⊆ R, class of tonal maps T
    if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
    r1
    x
    −4 −3 −2 −1 0 1 2 3 4
    S |S| ℘(S) T for T ∩ S Shattered?
    {} 0 {} r∞ Yes
    {1} 1 {}, {1} r∞, rθ≤1 Yes
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64

    View Slide

  158. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Vapnik-Chervonenkis dimension: definition by example —
    rays in R
    Given sample S ⊆ R, class of tonal maps T
    if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
    r1
    x
    −4 −3 −2 −1 0 1 2 3 4
    S |S| ℘(S) T for T ∩ S Shattered?
    {} 0 {} r∞ Yes
    {1} 1 {}, {1} r∞, rθ≤1 Yes
    {0, 1} 2 {}, {1} r∞, rθ≤1
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64

    View Slide

  159. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Vapnik-Chervonenkis dimension: definition by example —
    rays in R
    Given sample S ⊆ R, class of tonal maps T
    if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
    r0
    x
    −4 −3 −2 −1 0 1 2 3 4
    S |S| ℘(S) T for T ∩ S Shattered?
    {} 0 {} r∞ Yes
    {1} 1 {}, {1} r∞, rθ≤1 Yes
    {0, 1} 2 {}, {1} r∞, rθ≤1
    {0, 1} rθ≤0
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64

    View Slide

  160. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Vapnik-Chervonenkis dimension: definition by example —
    rays in R
    Given sample S ⊆ R, class of tonal maps T
    if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
    r1
    x
    −4 −3 −2 −1 0 1 2 3 4
    S |S| ℘(S) T for T ∩ S Shattered?
    {} 0 {} r∞ Yes
    {1} 1 {}, {1} r∞, rθ≤1 Yes
    {0, 1} 2 {}, {1} r∞, rθ≤1
    {0, 1} rθ≤0
    {0} ?? No!
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64

    View Slide

  161. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Vapnik-Chervonenkis dimension: definition by example —
    rays in R
    Given sample S ⊆ R, class of tonal maps T
    if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
    r0
    x
    −4 −3 −2 −1 0 1 2 3 4
    S |S| ℘(S) T for T ∩ S Shattered?
    {} 0 {} r∞ Yes
    {1} 1 {}, {1} r∞, rθ≤1 Yes
    {0, 1} 2 {}, {1} r∞, rθ≤1
    {0, 1} rθ≤0
    {0} ?? No!
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64

    View Slide

  162. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Vapnik-Chervonenkis dimension: definition by example —
    rays in R
    Given sample S ⊆ R, class of tonal maps T
    if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
    V C(T ) = max{|S| : S is shattered by T } = 1
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64

    View Slide

  163. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    Vapnik-Chervonenkis dimension: definition by example —
    rays in R
    Given sample S ⊆ R, class of tonal maps T
    if {S ∩ T|T ∈ T } = ℘(S), then S is shattered by T
    What if T consisted of the union of a finite number of
    intervals on R?
    [0,1]
    [-4,-1]
    x
    −4 −3 −2 −1 0 1 2 3 4
    V C(T ) = max{|S| : S is shattered by T } infinite
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 64

    View Slide

  164. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    VC dimension and feasible learnability
    Finite VC dimension is a criterion for feasible learnability
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 65

    View Slide

  165. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    VC dimension and feasible learnability
    Finite VC dimension is a criterion for feasible learnability
    VC dim of ellipsoids in Rd : (d2 + 3d)/2 (Akama et al. 2011)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 65

    View Slide

  166. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    VC dimension and feasible learnability
    Finite VC dimension is a criterion for feasible learnability
    VC dim of ellipsoids in Rd : (d2 + 3d)/2 (Akama et al. 2011)
    VC dim of arbitrary convex polygons in Rd ∀d is infinite
    (Blumer et al. 1989)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 65

    View Slide

  167. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    VC dimension and feasible learnability
    Finite VC dimension is a criterion for feasible learnability
    VC dim of ellipsoids in Rd : (d2 + 3d)/2 (Akama et al. 2011)
    VC dim of arbitrary convex polygons in Rd ∀d is infinite
    (Blumer et al. 1989)
    VC dimension is applicable to real and discrete spaces
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 65

    View Slide

  168. A strategy for characterizing the learning problem
    Characterizing tonal maps
    Is onset/offset f0 sufficient for defining tonal spaces?
    Structure in the hypothesis space
    VC dimension and feasible learnability
    Finite VC dimension is a criterion for feasible learnability
    VC dim of ellipsoids in Rd : (d2 + 3d)/2 (Akama et al. 2011)
    VC dim of arbitrary convex polygons in Rd ∀d is infinite
    (Blumer et al. 1989)
    VC dimension is applicable to real and discrete spaces
    VC dimension of constraint ranking/weighting hypothesis spaces
    for OT and HG is finite (Riggle 2009, Bane et al. 2010)
    Kristine M. Yu UMD College Park, UMASS Amherst Learnability of tones from the speech signal 65

    View Slide