Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (1) — 重回帰分析 / Analysis using R (su...
Search
Kenji Saito
PRO
November 30, 2024
Technology
0
29
R を用いた分析(補講) (1) — 重回帰分析 / Analysis using R (supplementary) (1) - Multiple regression analysis
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第11回で使用したスライドです。
Kenji Saito
PRO
November 30, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
続・インクルーシブな社会へ / Continuing Towards an Inclusive Society
ks91
PRO
0
14
AGI (人工一般知能) と創る新しく奇妙な社会 / New and Stranger Society built with AGI
ks91
PRO
0
63
回帰分析/大規模言語モデルと統計 / Regression Analysis, Large Language Models and Statistics
ks91
PRO
0
67
多重比較/相関分析 / Multiple Comparison and Correlation Analysis
ks91
PRO
0
64
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 3
ks91
PRO
0
60
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 2
ks91
PRO
0
47
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 1
ks91
PRO
1
73
インクルーシブな社会へ / Toward an Inclusive Society
ks91
PRO
0
21
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
70
Other Decks in Technology
See All in Technology
次世代KYC活動報告 / 20250219-BizDay17-KYC-nextgen
oidfj
0
360
クラウドサービス事業者におけるOSS
tagomoris
3
950
深層学習と古典的画像アルゴリズムを組み合わせた類似画像検索内製化
shutotakahashi
1
260
分解して理解する Aspire
nenonaninu
2
490
OpenID Connect for Identity Assurance の概要と翻訳版のご紹介 / 20250219-BizDay17-OIDC4IDA-Intro
oidfj
0
370
Amazon S3 Tablesと外部分析基盤連携について / Amazon S3 Tables and External Data Analytics Platform
nttcom
0
150
脳波を用いた嗜好マッチングシステム
hokkey621
0
170
レビューを増やしつつ 高評価維持するテクニック
tsuzuki817
1
830
NFV基盤のOpenStack更新 ~9世代バージョンアップへの挑戦~
vtj
0
230
The Future of SEO: The Impact of AI on Search
badams
0
240
Visualize, Visualize, Visualize and rclone
tomoaki0705
9
67k
「正しく」失敗できる チームの作り方 〜リアルな事例から紐解く失敗を恐れない組織とは〜 / A team that can fail correctly
i35_267
1
520
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Practical Orchestrator
shlominoach
186
10k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
How to Ace a Technical Interview
jacobian
276
23k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
Designing for humans not robots
tammielis
250
25k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 11 R ( ) (1) — (WBS) 2024 11 R ( ) (1) — — 2024-11 – p.1/11
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 11 R ( ) (1) — — 2024-11
– p.2/11
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 11 R ( ) (1) — — 2024-11 – p.3/11
( ) R ( ) = a + b1 ×
+ b2 × + e 2024 11 R ( ) (1) — — 2024-11 – p.4/11
(1/2) “ .txt” g <- read.table(" .txt", header=T) # g
# boxplot(g) # plot(g) # cor.test(g$ , g$ ) 2024 11 R ( ) (1) — — 2024-11 – p.5/11
( ) ፉ㌟㛗 ∗㌟㛗 ẕ㌟㛗 150 155 160 165 170
175 : 158.37cm : 169.02cm : 155.2cm 2024 11 R ( ) (1) — — 2024-11 – p.6/11
( ) ፉ㌟㛗 160 165 170 175 152 156 160
164 160 165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 . . . . . . 2024 11 R ( ) (1) — — 2024-11 – p.7/11
(2/2) m <- lm(g$ ~ g$ + g$ ) #
+ m # summary(m) # “Multiple R-squared” “Adjusted R-squared” 30% 2024 11 R ( ) (1) — — 2024-11 – p.8/11
( pp.291–298) R2 = 1 − SSresidual SStotal = 1
− n i=1 (yi − ˆ yi)2 n i=1 (yi − ¯ y)2 R∗2 = 1 − SSresidual n−k−1 SStotal n−1 = 1 − (1 − R2)(n − 1) n − k − 1 ( k ) 2024 11 R ( ) (1) — — 2024-11 – p.9/11
(b1 b2 ) sg <- scale(g) # sg <- data.frame(sg)
# m <- lm(sg$ ~ sg$ + sg$ ) # summary(m) # . . . : 3.951e-01 : 3.436e-01 ^^; ^^; 2024 11 R ( ) (1) — — 2024-11 – p.10/11
2024 11 R ( ) (1) — — 2024-11 –
p.11/11