Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (2) — 人工データの生成 / Generating Artifi...
Search
Kenji Saito
PRO
January 25, 2024
Business
0
100
R を用いた分析(補講) (2) — 人工データの生成 / Generating Artificial Data
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第11回で使用したスライドです。
Kenji Saito
PRO
January 25, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
続・インクルーシブな社会へ / Continuing Towards an Inclusive Society
ks91
PRO
0
11
AGI (人工一般知能) と創る新しく奇妙な社会 / New and Stranger Society built with AGI
ks91
PRO
0
60
回帰分析/大規模言語モデルと統計 / Regression Analysis, Large Language Models and Statistics
ks91
PRO
0
61
多重比較/相関分析 / Multiple Comparison and Correlation Analysis
ks91
PRO
0
61
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 3
ks91
PRO
0
57
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 2
ks91
PRO
0
44
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 1
ks91
PRO
1
70
インクルーシブな社会へ / Toward an Inclusive Society
ks91
PRO
0
17
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
67
Other Decks in Business
See All in Business
SendGrid Night #10「Email Activityの活用法」
adaisukev
0
160
見積り、計画の考え方や手法についてビープラウドの場合を紹介します/ introduce-the-concept-and-method-of-estimation-and-planning-in-the-case-of-BeProud
haru860
4
2.1k
アノマリーマーケティング カルチャーコード_ver1.0
anomalymarketing
1
170
新規投資家向け資料20250214
junkiogawa
0
1.2k
5分でわかる松鶴建設 | Shokaku Recruit
shokaku_recruit
0
570
Rimo会社紹介資料
rimollc
1
130
株式会社Plott Company Deck
plott
0
1.2k
Geolonia のデータ連携基盤とスマートシティ構想
miya0001
1
100
VISASQ: ABOUT DEV TEAM
eikohashiba
3
23k
Alp_CompanyDeck.pdf
alpinc
0
160
Sales Marker Culture Book(English)
salesmarker
PRO
2
3.8k
リンクアンドモチベーション 営業コンサルタント向け紹介資料 / Introduction to Link and Motivation for Sales and Consultants
lmi
0
110k
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Bootstrapping a Software Product
garrettdimon
PRO
306
110k
GraphQLとの向き合い方2022年版
quramy
44
13k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.2k
Statistics for Hackers
jakevdp
797
220k
Building an army of robots
kneath
303
45k
Building Adaptive Systems
keathley
40
2.4k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
Mobile First: as difficult as doing things right
swwweet
223
9.3k
Done Done
chrislema
182
16k
Transcript
generated by Stable Diffusion XL v1.0 2023 12 R (
) (2) — (WBS) 2023 12 R ( ) (2) — — 2024-01 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 12 R ( ) (2) — — 2024-01
– p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 12 R ( ) (2) — — 2024-01 – p.3/14
N(µ, σ2) ρ 2 ( : ˆ y = a
+ b1 x1 + b2 x2 + e ) 2023 12 R ( ) (2) — — 2024-01 – p.4/14
N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x
<- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2023 12 R ( ) (2) — — 2024-01 – p.5/14
Histogram of x x Frequency 10 20 30 40 50
60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2023 12 R ( ) (2) — — 2024-01 – p.6/14
ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =
0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2023 12 R ( ) (2) — — 2024-01 – p.7/14
“mvrnorm()” = S xx S xy S xy S yy
= S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2023 12 R ( ) (2) — — 2024-01 – p.8/14
ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-
mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2023 12 R ( ) (2) — — 2024-01 – p.9/14
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2023 12 R ( ) (2) — — 2024-01 – p.10/14
(1/2) “ .R” n <- 50 # a <- 49.4
# ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2023 12 R ( ) (2) — — 2024-01 – p.11/14
(2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,
mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2023 12 R ( ) (2) — — 2024-01 – p.12/14
ፉ㌟㛗 160 165 170 175 152 156 160 164 160
165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2023 12 R ( ) (2) — — 2024-01 – p.13/14
2023 12 R ( ) (2) — — 2024-01 –
p.14/14