Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (2) — 人工データの生成 / Generating Artifi...
Search
Kenji Saito
PRO
January 25, 2024
Business
0
140
R を用いた分析(補講) (2) — 人工データの生成 / Generating Artificial Data
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第11回で使用したスライドです。
Kenji Saito
PRO
January 25, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
スマートコントラクトデザイン / Smart Contract Design
ks91
PRO
0
5
FinTech 7-8 : Blockchain
ks91
PRO
0
70
スマートコントラクトプログラミング / Smart Contract Programming
ks91
PRO
0
19
AI が研究する時代に、人はどう育つのか? — GAMER PAT にみる "シリアスゲームとしての知的訓練" / In an era where AI conducts research, how will humans develop? — "Intellectual Training as a Serious Game" Seen in GAMER PAT
ks91
PRO
0
51
FinTech 5-6 : The World of Apps
ks91
PRO
0
100
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
81
ブロックチェーン概論とインストール大会 / Introduction to Blockchain and Installation Workshop
ks91
PRO
0
10
FinTech 3-4 : Internet Technology and Governance
ks91
PRO
0
83
民主主義と博愛(Humanitarianism) / Democracy and Humanitarianism
ks91
PRO
0
15
Other Decks in Business
See All in Business
Kyash TechTalk #8 Kyashにおけるクレジット事業部とは
sayueda
0
130
Algomatic Works Company Deck
algomatic
PRO
1
1.2k
Agentic AIを用いたサプライチェーン最適化
mickey_kubo
1
110
株式会社トリビュー|エンジニア向け会社説明資料
tribeau
0
6.9k
佐賀県職員採用_ピッチスライド
sagasaiyou
0
5.8k
株式会社ジュニ - 採用ピッチ
junni_inc
2
23k
VISASQ: ABOUT DEV TEAM
eikohashiba
5
36k
三井物産グループのデジタル証券〜ザ ロイヤルパークホテル 東京汐留〜再販売②徹底解説セミナースライド(20251008)
c0rp_mdm
PRO
1
370
フルカイテン株式会社 採用資料
fullkaiten
0
76k
20251012_社内でのMCT活動
ponponmikankan
1
820
人が辞めても困らない職場へ - AIでノウハウがたまる仕組み、文化を作る実践術
nkajihara
4
1.1k
株式会社ドリコム_事業計画及び成長可能性に関する説明資料
drecom_hr
0
3.1k
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
It's Worth the Effort
3n
187
28k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Mobile First: as difficult as doing things right
swwweet
225
10k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
generated by Stable Diffusion XL v1.0 2023 12 R (
) (2) — (WBS) 2023 12 R ( ) (2) — — 2024-01 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 12 R ( ) (2) — — 2024-01
– p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 12 R ( ) (2) — — 2024-01 – p.3/14
N(µ, σ2) ρ 2 ( : ˆ y = a
+ b1 x1 + b2 x2 + e ) 2023 12 R ( ) (2) — — 2024-01 – p.4/14
N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x
<- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2023 12 R ( ) (2) — — 2024-01 – p.5/14
Histogram of x x Frequency 10 20 30 40 50
60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2023 12 R ( ) (2) — — 2024-01 – p.6/14
ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =
0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2023 12 R ( ) (2) — — 2024-01 – p.7/14
“mvrnorm()” = S xx S xy S xy S yy
= S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2023 12 R ( ) (2) — — 2024-01 – p.8/14
ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-
mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2023 12 R ( ) (2) — — 2024-01 – p.9/14
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2023 12 R ( ) (2) — — 2024-01 – p.10/14
(1/2) “ .R” n <- 50 # a <- 49.4
# ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2023 12 R ( ) (2) — — 2024-01 – p.11/14
(2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,
mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2023 12 R ( ) (2) — — 2024-01 – p.12/14
ፉ㌟㛗 160 165 170 175 152 156 160 164 160
165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2023 12 R ( ) (2) — — 2024-01 – p.13/14
2023 12 R ( ) (2) — — 2024-01 –
p.14/14