Upgrade to Pro — share decks privately, control downloads, hide ads and more …

R を用いた分析(補講) (2) — 人工データの生成 / Generating Artifi...

R を用いた分析(補講) (2) — 人工データの生成 / Generating Artificial Data

早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第11回で使用したスライドです。

Kenji Saito

January 25, 2024
Tweet

More Decks by Kenji Saito

Other Decks in Business

Transcript

  1. generated by Stable Diffusion XL v1.0 2023 12 R (

    ) (2) — (WBS) 2023 12 R ( ) (2) — — 2024-01 – p.1/14
  2. ( 20 ) 1 • 2 R • 3 •

    4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 12 R ( ) (2) — — 2024-01 – p.3/14
  3. N(µ, σ2) ρ 2 ( : ˆ y = a

    + b1 x1 + b2 x2 + e ) 2023 12 R ( ) (2) — — 2024-01 – p.4/14
  4. N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x

    <- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2023 12 R ( ) (2) — — 2024-01 – p.5/14
  5. Histogram of x x Frequency 10 20 30 40 50

    60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2023 12 R ( ) (2) — — 2024-01 – p.6/14
  6. ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =

    0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2023 12 R ( ) (2) — — 2024-01 – p.7/14
  7. “mvrnorm()” = S xx S xy S xy S yy

    = S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2023 12 R ( ) (2) — — 2024-01 – p.8/14
  8. ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-

    mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2023 12 R ( ) (2) — — 2024-01 – p.9/14
  9. 0 5 10 15 20 13 14 15 16 17

    18 ㈇ࡢ┦㛵ࡢ౛ 㐌ᙜࡓࡾࡢㄢእ㐠ື᫬㛫 100m㉮ࡢࢱ࢖࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2023 12 R ( ) (2) — — 2024-01 – p.10/14
  10. (1/2) “ .R” n <- 50 # a <- 49.4

    # ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2023 12 R ( ) (2) — — 2024-01 – p.11/14
  11. (2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,

    mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2023 12 R ( ) (2) — — 2024-01 – p.12/14
  12. ፉ㌟㛗 160 165 170 175 152 156 160 164 160

    165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2023 12 R ( ) (2) — — 2024-01 – p.13/14