Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (2) — 人工データの生成 / Generating Artifi...
Search
Kenji Saito
PRO
January 25, 2024
Business
0
130
R を用いた分析(補講) (2) — 人工データの生成 / Generating Artificial Data
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第11回で使用したスライドです。
Kenji Saito
PRO
January 25, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
デジタルトランスフォーメーションと民主主義 / Digital Transformation and Democracy
ks91
PRO
0
7
We Never Took the Kobayashi Maru Test Until Now. What Do You Think of Our Solutions? — Journeys of the Mind Through a No-Win Game
ks91
PRO
0
19
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
75
ロボットを雰囲気(ヴァイブ)でプログラミングするこどもたち / Children Vibe-Programming Robots
ks91
PRO
0
23
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 3
ks91
PRO
0
31
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 2
ks91
PRO
0
35
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
160
未来へのフォワードキャスト / Forward Cast to the Future
ks91
PRO
0
88
発表と総括 / Presentations and Summary
ks91
PRO
0
62
Other Decks in Business
See All in Business
【UI/UXデザイナー職】中途採用向け会社説明資料(テックファーム株式会社)
techfirm
0
330
なぜ人はすれ違うのか_製造業で当たり前に行っていた根回しから考える、事前の配慮で顧客やチームとの対話を促進する方法
katsuakihoribe8
1
3.3k
IT子会社のグローバルトレンド #scrumsendai / Global Trends in IT Subsidiaries
kyonmm
PRO
3
1.1k
malna-recruiting-pitch
malna
0
9.2k
Findy社0901イベント資料(note株式会社)
yamane
1
1.1k
“成果”を出すためのプレゼン準備 プレゼン資料作成の前にやること
bunnchinn3
1
130
Steal This Stack: Automate Your Learning Campaigns
tmiket
0
130
タケウチグループRecruit
takeuchigroup
0
7.8k
20250913_AWS アカウント 150 超の組織で取り組む Lambda EoL 対応
tsunojun
1
250
物流の専門家がお客様に伴走するサブスク型コンサルティング
mclogi
0
450
HRBrain 中途採用資料
hrbrain
1
2.1k
CREによる顧客のキャッチアップを加速する仕組み作り / Creating a mechanism to accelerate customer catch-up through CRE
woody_kawagoe
1
260
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
The Power of CSS Pseudo Elements
geoffreycrofte
77
6k
Facilitating Awesome Meetings
lara
55
6.5k
The Art of Programming - Codeland 2020
erikaheidi
56
13k
Speed Design
sergeychernyshev
32
1.1k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Being A Developer After 40
akosma
90
590k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Become a Pro
speakerdeck
PRO
29
5.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
Transcript
generated by Stable Diffusion XL v1.0 2023 12 R (
) (2) — (WBS) 2023 12 R ( ) (2) — — 2024-01 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 12 R ( ) (2) — — 2024-01
– p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 12 R ( ) (2) — — 2024-01 – p.3/14
N(µ, σ2) ρ 2 ( : ˆ y = a
+ b1 x1 + b2 x2 + e ) 2023 12 R ( ) (2) — — 2024-01 – p.4/14
N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x
<- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2023 12 R ( ) (2) — — 2024-01 – p.5/14
Histogram of x x Frequency 10 20 30 40 50
60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2023 12 R ( ) (2) — — 2024-01 – p.6/14
ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =
0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2023 12 R ( ) (2) — — 2024-01 – p.7/14
“mvrnorm()” = S xx S xy S xy S yy
= S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2023 12 R ( ) (2) — — 2024-01 – p.8/14
ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-
mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2023 12 R ( ) (2) — — 2024-01 – p.9/14
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2023 12 R ( ) (2) — — 2024-01 – p.10/14
(1/2) “ .R” n <- 50 # a <- 49.4
# ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2023 12 R ( ) (2) — — 2024-01 – p.11/14
(2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,
mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2023 12 R ( ) (2) — — 2024-01 – p.12/14
ፉ㌟㛗 160 165 170 175 152 156 160 164 160
165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2023 12 R ( ) (2) — — 2024-01 – p.13/14
2023 12 R ( ) (2) — — 2024-01 –
p.14/14