Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (2) — 人工データの生成 / Generating Artifi...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Kenji Saito
PRO
January 25, 2024
Business
0
140
R を用いた分析(補講) (2) — 人工データの生成 / Generating Artificial Data
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第11回で使用したスライドです。
Kenji Saito
PRO
January 25, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
非営利組織の起業/発表と総括 / Starting up a Nonprofit Organization, Presentation and Summary
ks91
PRO
0
51
自己開発 / Self-Development
ks91
PRO
1
13
あなたは何によって憶えられたいですか? / What Do You Want to be Remembered for?
ks91
PRO
0
15
ボランティアと理事会 / Volunteers and Board of Directors
ks91
PRO
0
38
メタ・ネイチャーポジティブへの道 / The Path to Meta Nature Positive
ks91
PRO
0
31
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 3 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 3
ks91
PRO
0
49
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 2 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 2
ks91
PRO
0
83
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 1 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 1
ks91
PRO
0
78
成果と意思決定 / Performance and Making Decisions
ks91
PRO
0
67
Other Decks in Business
See All in Business
Nulab Fun Deck 〜チームワークが、世界をもっと『おもしろく』する〜
nulabinc
PRO
1
1.4k
株式会社gecogeco 会社紹介資料
gecogeco
2
3.5k
RDRAモデルからFP・工数・金額につなぐ定量見積り
bpstudy
1
200
採用ピッチ資料
s_kamada
0
260
【正社員型エンジニア派遣事業】採用資料
cdcsaiyo
0
240
Startup Research : Challenges and solutions for female startup founders in Japan
mpower_partners
PRO
0
270
jinjer recruiting pitch
jinjer_official
0
140k
暗号商流(クリプト・フロー) 〜ボーダレスEC/POD with JPYC〜
showyingart
0
120
株式会社EventHub 会社紹介資料
eventhub
1
43k
CC採用候補者向けピッチ資料
crosscommunication
2
57k
LW_brochure_engineer
lincwellhr
0
40k
(4枚)PDCAサイクルとOODAループの違いを徹底解説
nyattx
PRO
0
130
Featured
See All Featured
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
120
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
300
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
30 Presentation Tips
portentint
PRO
1
210
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
50
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
88
Accessibility Awareness
sabderemane
0
47
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
450
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
HDC tutorial
michielstock
1
350
Transcript
generated by Stable Diffusion XL v1.0 2023 12 R (
) (2) — (WBS) 2023 12 R ( ) (2) — — 2024-01 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 12 R ( ) (2) — — 2024-01
– p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 12 R ( ) (2) — — 2024-01 – p.3/14
N(µ, σ2) ρ 2 ( : ˆ y = a
+ b1 x1 + b2 x2 + e ) 2023 12 R ( ) (2) — — 2024-01 – p.4/14
N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x
<- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2023 12 R ( ) (2) — — 2024-01 – p.5/14
Histogram of x x Frequency 10 20 30 40 50
60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2023 12 R ( ) (2) — — 2024-01 – p.6/14
ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =
0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2023 12 R ( ) (2) — — 2024-01 – p.7/14
“mvrnorm()” = S xx S xy S xy S yy
= S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2023 12 R ( ) (2) — — 2024-01 – p.8/14
ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-
mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2023 12 R ( ) (2) — — 2024-01 – p.9/14
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2023 12 R ( ) (2) — — 2024-01 – p.10/14
(1/2) “ .R” n <- 50 # a <- 49.4
# ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2023 12 R ( ) (2) — — 2024-01 – p.11/14
(2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,
mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2023 12 R ( ) (2) — — 2024-01 – p.12/14
ፉ㌟㛗 160 165 170 175 152 156 160 164 160
165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2023 12 R ( ) (2) — — 2024-01 – p.13/14
2023 12 R ( ) (2) — — 2024-01 –
p.14/14