Upgrade to Pro — share decks privately, control downloads, hide ads and more …

R を用いた分析(補講) (1) — 重回帰分析 / Multiple Regression ...

R を用いた分析(補講) (1) — 重回帰分析 / Multiple Regression Analysis

早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第11回で使用したスライドです。

Kenji Saito

January 25, 2024
Tweet

More Decks by Kenji Saito

Other Decks in Business

Transcript

  1. generated by Stable Diffusion XL v1.0 2023 11 R (

    ) (1) — (WBS) 2023 11 R ( ) (1) — — 2024-01 – p.1/11
  2. ( 20 ) 1 • 2 R • 3 •

    4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 11 R ( ) (1) — — 2024-01 – p.3/11
  3. ( ) R ( ) = a + b1 ×

    + b2 × + e 2023 11 R ( ) (1) — — 2024-01 – p.4/11
  4. (1/2) “ .txt” g <- read.table(" .txt", header=T) # g

    # boxplot(g) # plot(g) # cor.test(g$ , g$ ) 2023 11 R ( ) (1) — — 2024-01 – p.5/11
  5. ( ) ፉ㌟㛗 ∗㌟㛗 ẕ㌟㛗 150 155 160 165 170

    175 : 158.37cm : 169.02cm : 155.2cm 2023 11 R ( ) (1) — — 2024-01 – p.6/11
  6. ( ) ፉ㌟㛗 160 165 170 175 152 156 160

    164 160 165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 . . . . . . 2023 11 R ( ) (1) — — 2024-01 – p.7/11
  7. (2/2) m <- lm(g$ ~ g$ + g$ ) #

    + m # summary(m) # “Multiple R-squared” “Adjusted R-squared” 30% 2023 11 R ( ) (1) — — 2024-01 – p.8/11
  8. ( pp.291–298) R2 = 1 − SSresidual SStotal = 1

    − n i=1 (yi − ˆ yi)2 n i=1 (yi − ¯ y)2 R∗2 = 1 − SSresidual n−k−1 SStotal n−1 = 1 − (1 − R2)(n − 1) n − k − 1 ( k ) 2023 11 R ( ) (1) — — 2024-01 – p.9/11
  9. (b1 b2 ) sg <- scale(g) # sg <- data.frame(sg)

    # m <- lm(sg$ ~ sg$ + sg$ ) # summary(m) # . . . : 3.951e-01 : 3.436e-01 ^^; ^^; 2023 11 R ( ) (1) — — 2024-01 – p.10/11