Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (1) — 重回帰分析 / Multiple Regression ...
Search
Kenji Saito
PRO
January 25, 2024
Business
0
82
R を用いた分析(補講) (1) — 重回帰分析 / Multiple Regression Analysis
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第11回で使用したスライドです。
Kenji Saito
PRO
January 25, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
24
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
6
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
38
じわじわ迫ってきている自動化社会 (その先にメタ・ネイチャー) / The Slowly Approaching Automated Society (and its beyond: Meta-Nature)
ks91
PRO
0
6
起こりうる誤った推論/平均・分散・標準偏差・自由度 / Possible false inferences, means, variances, standard deviations and degrees of freedom
ks91
PRO
0
55
LaTeX と Overleaf によるショートペーパー作成 / Short paper writing with LaTeX and Overleaf
ks91
PRO
0
18
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
ks91
PRO
0
11
R を用いた検定(補講) (2) — カイ二乗検定 / Tests using R (supplementary) (2) - Chi-squared test
ks91
PRO
0
12
R を用いた分析(補講) (1) — 重回帰分析 / Analysis using R (supplementary) (1) - Multiple regression analysis
ks91
PRO
0
10
Other Decks in Business
See All in Business
Sales Marker Culture Book(English)
salesmarker
PRO
1
3k
コーポレートストーリー(新規投資家様向け会社説明資料)
gatechnologies
1
9.5k
概要
_connect
0
690
仮説を形作るステップ
tumada
PRO
7
930
「+ Joy」 初めは熱々だったはずなのに だんだん硬くて冷たくなっていく目標に 血を通わせる工夫_2024年度下期アップデート版
sasakendayo
0
180
Japan Open Chain ホワイトペーパー
gugroup
0
250
CData 製品を使って不動産API を可視化!実際に注文住宅を買ってみるまでの話
cdataj
2
140
アークエルテクノロジーズ株式会社 会社説明資料
aakel
0
130
いま、データに必要な解像度
hik0107
33
13k
Canary Inc. Company Deck
canaryinc
0
40k
産業用自家消費型太陽光80kW 投資対効果(ROI)・投資回収期間シミュレーション結果(エネがえるBiz診断レポートサンプル)
satoru_higuchi
PRO
0
340
Entrance Book ビジネスイノベーションサービス部
arisaiyou
0
220
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
17
2.3k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.1k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Building Adaptive Systems
keathley
38
2.3k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Agile that works and the tools we love
rasmusluckow
328
21k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Adopting Sorbet at Scale
ufuk
73
9.1k
Transcript
generated by Stable Diffusion XL v1.0 2023 11 R (
) (1) — (WBS) 2023 11 R ( ) (1) — — 2024-01 – p.1/11
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 11 R ( ) (1) — — 2024-01
– p.2/11
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 11 R ( ) (1) — — 2024-01 – p.3/11
( ) R ( ) = a + b1 ×
+ b2 × + e 2023 11 R ( ) (1) — — 2024-01 – p.4/11
(1/2) “ .txt” g <- read.table(" .txt", header=T) # g
# boxplot(g) # plot(g) # cor.test(g$ , g$ ) 2023 11 R ( ) (1) — — 2024-01 – p.5/11
( ) ፉ㌟㛗 ∗㌟㛗 ẕ㌟㛗 150 155 160 165 170
175 : 158.37cm : 169.02cm : 155.2cm 2023 11 R ( ) (1) — — 2024-01 – p.6/11
( ) ፉ㌟㛗 160 165 170 175 152 156 160
164 160 165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 . . . . . . 2023 11 R ( ) (1) — — 2024-01 – p.7/11
(2/2) m <- lm(g$ ~ g$ + g$ ) #
+ m # summary(m) # “Multiple R-squared” “Adjusted R-squared” 30% 2023 11 R ( ) (1) — — 2024-01 – p.8/11
( pp.291–298) R2 = 1 − SSresidual SStotal = 1
− n i=1 (yi − ˆ yi)2 n i=1 (yi − ¯ y)2 R∗2 = 1 − SSresidual n−k−1 SStotal n−1 = 1 − (1 − R2)(n − 1) n − k − 1 ( k ) 2023 11 R ( ) (1) — — 2024-01 – p.9/11
(b1 b2 ) sg <- scale(g) # sg <- data.frame(sg)
# m <- lm(sg$ ~ sg$ + sg$ ) # summary(m) # . . . : 3.951e-01 : 3.436e-01 ^^; ^^; 2023 11 R ( ) (1) — — 2024-01 – p.10/11
2023 11 R ( ) (1) — — 2024-01 –
p.11/11