Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
組織とデータ分析/統計的仮説検定 / Organization, data analysis ...
Search
Kenji Saito
PRO
November 28, 2024
Technology
0
170
組織とデータ分析/統計的仮説検定 / Organization, data analysis and statistical hypothesis testing
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬の第1-2回で使用したスライドです。
Kenji Saito
PRO
November 28, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
ウェブサービスデザイン 2 / Web Service Design 2
ks91
PRO
0
8
Learning to Govern the Orbital Commons: A Serious Game on Incentivizing Debris Removal
ks91
PRO
0
4
FinTech 13-14 : FinTech Ideathon and Poster
ks91
PRO
0
92
講師自己紹介 / Lecturer Self-Introduction
ks91
PRO
0
18
講師研究紹介 / Lecturer Research Profile
ks91
PRO
0
12
NPO とは何か (を考えるワールドカフェ) / What is an NPO? (A World Café for Reflection)
ks91
PRO
0
70
FinTech 11-12 : Cyber-Physical Society and Future of Finance
ks91
PRO
0
67
AI 前提社会のキャッチ=22 (または私は如何にして民主主義、文書主義、人道的活動...) / Catch-22 in an AI-Premised Society (or How I Came to Democracy, Documentation, Humanitarian Activities...)
ks91
PRO
0
12
ウェブサービスデザイン 1 / Web Service Design 1
ks91
PRO
0
9
Other Decks in Technology
See All in Technology
AI駆動開発2025年振り返りとTips集
knr109
1
130
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
21k
一億総業務改善を支える社内AIエージェント基盤の要諦
yukukotani
4
1.9k
都市スケールAR制作で気をつけること
segur
0
210
Master Dataグループ紹介資料
sansan33
PRO
1
4k
MAP-7thplaceSolution
yukichi0403
2
170
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
45k
20251127 BigQueryリモート関数で作る、お手軽AIバッチ実行環境
daimatz
0
320
AI駆動開発を実現するためのアーキテクチャと取り組み
baseballyama
17
15k
AI 時代のデータ戦略
na0
2
510
グローバルなコンパウンド戦略を支えるモジュラーモノリスとドメイン駆動設計
kawauso
3
10k
メッセージ駆動が可能にする結合の最適化
j5ik2o
9
1.7k
Featured
See All Featured
Done Done
chrislema
186
16k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
For a Future-Friendly Web
brad_frost
180
10k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
GraphQLとの向き合い方2022年版
quramy
49
14k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.2k
Transcript
Corporate data analysis — generated by Stable Diffusion XL v1.0
2024 1-2 (WBS) 2024 1-2 — 2024-12-02 – p.1/36
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 1-2 — 2024-12-02 – p.2/36
( ) ( ) ( ) CSO (Chief Science Officer)
1993 ( ) 2006 ( ) SFC 24 P2P (Peer-to-Peer) 2011 ( ) 2018 2019 VR 2021.9 & VR 2022.3 2023 AI VR&RPG 2023.5 “Don’t Be So Serious” 2023 2024 AI( ) 2024 “ALOHA FROM HAWAII” 2024 2024 AI( ) → ( ) 2024 1-2 — 2024-12-02 – p.3/36
Dropbox Dropbox ( ) 2024 1-2 — 2024-12-02 – p.4/36
(B A ) 1 ( ) 2 (Wilcoxon-Mann-Whitney ) 2024
1-2 — 2024-12-02 – p.5/36
R 2024 1-2 — 2024-12-02 – p.6/36
[ ] , (2022) R R ( ) R 2024
1-2 — 2024-12-02 – p.7/36
( ) 1 12 2 • 2 12 2 (B
A ) • 3 12 9 4 12 9 5 12 16 6 12 16 t 7 12 23 2 ( ) t 8 12 23 2 ( ) t 9 1 6 P 10 1 6 11 1 20 12 1 20 13 1 27 14 1 27 W-IOI 2024 1-2 — 2024-12-02 – p.8/36
( 20 25 ) 1 (20 ) • 2 R
( 55 ) • 3 (32 ) • 4 (14 ) • 5 ( Git) (22 ) • 6 ( ) (24 ) • 7 (1) (25 ) • 8 (2) (25 ) • 9 R ( ) (1) — Welch (17 ) • 10 R ( ) (2) — (21 ) • 11 R ( ) (1) — (15 ) • 12 R ( ) (2) — (19 ) • 13 GPT-4 (19 ) • 14 GPT-4 (29 ) • 15 ( ) LaTeX Overleaf (40 ) • 8 (12/16 ) / (2 ) OK / 2024 1-2 — 2024-12-02 – p.9/36
. . . . . . ( ) ( 20
×(14+1) ) 2024 1-2 — 2024-12-02 – p.10/36
(2 )(160 ) (10∼20 ) ( ) and/or 1 (80
) 1 Q & A & (30∼40 ) (30∼40 ) 2024 1-2 — 2024-12-02 – p.11/36
Moodle ( Q&A ) ( ) Discord ( ) ←
( ) 2024 1-2 — 2024-12-02 – p.12/36
( ) A4 2 2 (Overleaf ) L ATEX PDF
( ) 2024 1-2 — 2024-12-02 – p.13/36
+ + [ ] R , (2008) R 2024 1-2
— 2024-12-02 – p.14/36
2024 1-2 — 2024-12-02 – p.15/36
= ⇒ (1) (2) (3) = ⇒ ( ) (
(2)) = ⇒ ( ) ( ) AI (← ) 2024 1-2 — 2024-12-02 – p.16/36
(observation) (sample) (random variable) (probability distribution) (population) (simple random sampling)
( )( 2 t , , ) 2 ( , ) 2024 1-2 — 2024-12-02 – p.17/36
(B A ) 1 ( ) 2 (Wilcoxon-Mann-Whitney ) 2024
1-2 — 2024-12-02 – p.18/36
1 ( ) P(X = x) = n C x
· px · (1 − p)n−x E[X] = np (1) (null hypothesis) H0 (2) (test statistic) ( x ) (3) H0 (null distribution) (4) (rejection region) ( ; 5% 1%) · (significance level) (5) ( H0 ) 2024 1-2 — 2024-12-02 – p.19/36
B ( p.47) RStudio R n C x ‘choose(n,x)’ n
= 18, x = 0 . . . choose(18,0)×0.50 × 0.518 = choose(18,0)×0.518 ( ) ⇒ ( ) 3 : : : 2024 1-2 — 2024-12-02 – p.20/36
R ( B)(1/2) — R n <- 18 # p
<- 0.5 # <- c() # ( ) # x 0 for (x in 0:n) { # <- c( , choose(n,x)*p^x*(1-p)^(n-x)) } halfp <- 0 # ( 0 1) ( ) 2024 1-2 — 2024-12-02 – p.21/36
R ( B)(2/2) — R # x 0 ( )
for (x in 0:n) { # 0.025 if (halfp + [x+1] > 0.025) { break } halfp <- halfp + [x+1] # } # color <- rep(c("red"), x) # rep 2 color <- c(color, rep(c("black"), n + 1 - x*2), color) <- 0:n # x # plot (lwd ) plot( , , type="h", lwd=3, col=color) 2024 1-2 — 2024-12-02 – p.22/36
0 5 10 15 0.00 0.05 0.10 0.15 ேᩘ ☜⋡
2024 1-2 — 2024-12-02 – p.23/36
R > binom.test(14, n=18, p=0.5) p-value (P )( 9 )
0.05 ↑ 2024 1-2 — 2024-12-02 – p.24/36
2 (Wilcoxon-Mann-Whitney ) WMW ( ) A B A B
( ) (2) U (U ) · U = min(nAnB + 1 2 nA (nA + 1) − RA, nAnB + 1 2 nB (nB + 1) − RB ) (4) ((3) ) U0.05 (5) U U0.05 2024 1-2 — 2024-12-02 – p.25/36
D ( p.70) RStudio . . . 2024 1-2 —
2024-12-02 – p.26/36
R ( D)(1/2) — GPT ChatGPT (GPT-4) R ( )
1 ( ) ⇒ GPT-4 (1/2) # calculate_rank_sum <- function(sample1, sample2) { # combined_samples <- c(sample1, sample2) sample_group <- c(rep("sample1", length(sample1)), rep("sample2", length(sample2))) # ranks <- rank(combined_samples) 2024 1-2 — 2024-12-02 – p.27/36
R ( D)(2/2) — GPT ⇒ GPT-4 (2/2) # df
<- data.frame(value = combined_samples, group = sample_group, rank = ranks) # rank_sum_sample1 <- sum(df[df$group == "sample1", "rank"]) rank_sum_sample2 <- sum(df[df$group == "sample2", "rank"]) return(list(sample1_rank_sum = rank_sum_sample1, sample2_rank_sum = rank_sum_sample2)) } # sample1 <- c(3, 1, 4) sample2 <- c(2, 5, 6) # calculate_rank_sum(sample1, sample2) 2024 1-2 — 2024-12-02 – p.28/36
GPT . . . GPT-4 . . . ‘rank(. .
.)’ RStudio Help → Search R Help ⇒ GPT GPT 3 (1) (GPT ) (2) (GPT ) (3) 2024 1-2 — 2024-12-02 – p.29/36
R ( D)(1/2) — R <- c(4.6, 5.6, 3.2, 3.2,
3.7, 4.0, 5.0, 4.6) <- c(4.6, 4.9, 7.1, 6.0, 5.2, 3.9, 5.3, 5.8) # combined_samples <- c( , ) sample_group <- c(rep(" ", length( )), rep(" ", length( ))) # ranks <- rank(combined_samples) # df <- data.frame(value = combined_samples, group = sample_group, rank = ranks) # ra <- sum(df[df$group == " ", "rank"]) rb <- sum(df[df$group == " ", "rank"]) 2024 1-2 — 2024-12-02 – p.30/36
R ( D)(2/2) — R # U na <- length(
) nb <- length( ) U <- min(na*nb + na / 2 * (na + 1) - ra, na*nb + nb / 2 * (nb + 1) - rb) print(paste("U =", U)) # paste # sdf <- data.frame( , ) # boxplot(sdf, ylim=c(0, 8.0), ylab=" ( : )") U U0.05 2024 1-2 — 2024-12-02 – p.31/36
⫧‶ ⫧‶࡛ࡣ࡞࠸ 0 2 4 6 8 ᖺ (༢:ⓒ) 2024
1-2 — 2024-12-02 – p.32/36
R WMW > wilcox.test( , ) p-value (P )( 9
) 0.05 P ↑ 2024 1-2 — 2024-12-02 – p.33/36
2024 1-2 — 2024-12-02 – p.34/36
1. (1) (2) 2024 12 5 ( ) 23:59 JST
( ) Waseda Moodle (Q & A ) 2024 1-2 — 2024-12-02 – p.35/36
2024 1-2 — 2024-12-02 – p.36/36