$30 off During Our Annual Pro Sale. View Details »

Effect of inter annual and seasonal variability on oil fate along the Texas coastline

Kristen Thyng
November 04, 2013

Effect of inter annual and seasonal variability on oil fate along the Texas coastline

Presentation at the Estuarine and Coastal Modeling conference in San Diego, CA, November 4-6, 2014.

Kristen Thyng

November 04, 2013
Tweet

More Decks by Kristen Thyng

Other Decks in Science

Transcript

  1. Effect of Interannual and Seasonal Variability on Oil Fate
    along the Texas Coastline
    Kristen Thyng
    Rob Hetland
    ECM 2013
    Texas A&M University
    November 4, 2013
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 1 / 16

    View Slide

  2. Overview
    Using particle tracking
    Visualize Lagrangian flow
    TRACMASS
    Conserves mass
    Can track forward and backward and get the same paths
    TracPy: TRACMASS now wrapped in Python
    Applied here to cross-shelf transport - controls what
    material can reach shoreline
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 2 / 16

    View Slide

  3. TRACMASS Algorithm
    j
    j-1
    i-1 i
    ui,j
    ui-1,j
    vi,j
    vi,j-1
    (x0,y0
    )
    Longitude
    Latitude
    u(x)
    Horizontal velocities on a staggered Arakawa C grid
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 3 / 16

    View Slide

  4. TRACMASS Algorithm
    j
    j-1
    i-1 i
    ui,j
    ui-1,j
    vi,j
    vi,j-1
    (x0,y0
    )
    Longitude
    Latitude
    u(x)
    Linearly interpolate u in x to find u(x) across cell
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 3 / 16

    View Slide

  5. TRACMASS Algorithm
    j
    j-1
    i-1 i
    ui,j
    ui-1,j
    vi,j
    vi,j-1
    (x0,y0
    )
    Longitude
    Latitude
    dx/dt
    u(x)
    u = dx
    dt
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 3 / 16

    View Slide

  6. TRACMASS Algorithm
    j
    j-1
    i-1 i
    ui,j
    ui-1,j
    vi,j
    vi,j-1
    (x0,y0
    )
    Longitude
    Latitude
    x(t)
    u(x) dx/dt
    dx
    dt
    can be analytically solved for x(t)
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 3 / 16

    View Slide

  7. TRACMASS Algorithm
    j
    j-1
    i-1 i
    ui,j
    ui-1,j
    vi,j
    vi,j-1
    (x0,y0
    )
    Longitude
    Latitude
    t1,i
    u(x) dx/dt x(t)
    Solve for the time t when drifter would hit x wall
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 3 / 16

    View Slide

  8. TRACMASS Algorithm
    j
    j-1
    i-1 i
    ui,j
    ui-1,j
    vi,j
    vi,j-1
    (x0,y0
    )
    Longitude
    Latitude
    v(y)
    Same process in y and z directions
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 3 / 16

    View Slide

  9. TRACMASS Algorithm
    j
    j-1
    i-1 i
    ui,j
    ui-1,j
    vi,j
    vi,j-1
    (x0,y0
    )
    Longitude
    Latitude
    dy/dt
    Same process in y and z directions
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 3 / 16

    View Slide

  10. TRACMASS Algorithm
    j
    j-1
    i-1 i
    ui,j
    ui-1,j
    vi,j
    vi,j-1
    (x0,y0
    )
    Longitude
    Latitude
    y(t)
    Same process in y and z directions
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 3 / 16

    View Slide

  11. TRACMASS Algorithm
    j
    j-1
    i-1 i
    ui,j
    ui-1,j
    vi,j
    vi,j-1
    (x0,y0
    )
    Longitude
    Latitude
    t1,j
    Same process in y and z directions
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 3 / 16

    View Slide

  12. TRACMASS Algorithm
    j
    j-1
    i-1 i
    ui,j
    ui-1,j
    vi,j
    vi,j-1
    (x0,y0
    )
    Longitude
    Latitude
    (x1,y1
    )
    Minimum overall time is used to calculate position
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 3 / 16

    View Slide

  13. TRACMASS Algorithm
    j
    j-1
    i-1 i
    Ui,j
    Ui-1,j
    Vi,j
    Vi,j-1
    (x0,y0
    )
    Longitude
    Latitude
    (x1,y1
    )
    Instead of velocities, use fluxes to allow for differences in
    grid sizing
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 3 / 16

    View Slide

  14. TRACMASS Algorithm
    7 TRACMASS—A Lagrangian Trajectory Model 235
    Fig. 7.6 Schematic illustration of how the velocity fields u(t) can be updated in time, with new
    GCM data at regular intervals tG
    in green and linearly interpolated velocity points in red with
    the time step ti
    . The number of intermediate time steps between two GCM velocities is in this
    example IS
    = tG/ ti
    = 4
    updated successively as new fields are available. If this is made ‘on-line’, i.e., in
    the same time as the GCM is integrated, then this time interval will simply be the
    same as the time step the GCM is integrated with, which is typically of the order of
    minutes in a global GCM. If instead the trajectories are calculated ‘off-line’ it will
    be at least as often as the fields have been stored by the GCM.
    A linear time interpolation of the velocity fields between two GCM velocity fields
    enables a simple way to have shorter time steps by which the fields are updated in
    Interpolate between model outputs for time stepping (or
    use time dependent algorithm)


    os, K., Kjellsson, J., & J¨
    onsson, B. (2013). TRACMASS: A Lagrangian Trajectory Model. In Preventive Methods for Coastal
    Protection (pp. 225-249). Springer International Publishing.
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 3 / 16

    View Slide

  15. Validation: inertial oscillation


    os, K., Kjellsson, J., & J¨
    onsson, B. (2013). TRACMASS: A Lagrangian Trajectory Model. In Preventive Methods for Coastal
    Protection (pp. 225-249). Springer International Publishing.
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 4 / 16

    View Slide

  16. TRACMASS Features
    Subgrid parameterization using:
    –random turbulent velocities
    j
    j-1
    i-1 i
    ui,j+u’
    ui-1,j+u’
    vi,j+v’
    vi,j-1+v’
    (x0,y0)
    Longitude
    Latitude
    (x1,y1)
    (x1,y1)’
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 5 / 16

    View Slide

  17. TRACMASS Features
    Subgrid parameterization using:
    –random displacement on a circle
    j
    j-1
    i-1 i
    ui,j
    ui-1,j
    vi,j
    vi,j-1
    (x0,y0)
    Longitude
    Latitude
    (x1,y1)
    (x1,y1)’
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 5 / 16

    View Slide

  18. TRACMASS Features
    Subgrid parameterization using:
    –random displacement on an ellipse aligned with isobaths
    j
    j-1
    i-1 i
    ui,j
    ui-1,j
    vi,j
    vi,j-1
    (x0,y0)
    Longitude
    Latitude
    (x1,y1)
    (x1,y1)’
    After TRACMASS documentation. http://www.tracmass.org, http://doos.misu.su.se/tracmass/
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 5 / 16

    View Slide

  19. Relative Dispersion Model-Data Comparison
    0 10 20 30 40 50
    Days
    100
    101
    102
    103
    104
    105
    Relative Dispersion (km2)
    Data/Theory
    No diffusion (:) Turbulent fluctuations (-.), A
    H
    = 20m2/s
    Random displacement (-), A
    H
    = 5m2/s
    e0.55
    t2.2
    data from LaCasce & Ohlmann (2003), Journal of Marine Research
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 6 / 16

    View Slide

  20. Numerical Model of Northwest Gulf of Mexico
    Regional Ocean Modeling
    System (ROMS): 3D,
    hydrostatic, free surface
    Resolution: 500m to 2km
    horizontally, 30 vertical layers in
    5 to 3000m depths
    Initial/boundary conditions from
    Gulf of Mexico HYCOM:
    data-assimilating, atmospheric
    forcing
    Inflow from 9 rivers
    Mexico
    Galveston
    Bay Atchafalaya
    river
    Corpus
    Christi
    Houston
    Louisiana
    Texas
    Austin
    Zhang, Marta-Almeida, Hetland, JOO, 2012; Zhang, Hetland, Martinho-Almeida, DiMarco, JGR, 2012. GOM-HYCOM run by
    Naval Oceanographic Office. http://earthobservatory.nasa.gov/IOTD/view.php?id=41237
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 7 / 16

    View Slide

  21. Transport
    Mass-conserving formulation allows use of drifters to
    calculate transport and flux
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 8 / 16

    View Slide

  22. Drifter Simulations
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 9 / 16

    View Slide

  23. Cross-shelf Connectivity: Seasonality
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 10 / 16

    View Slide

  24. Cross-shelf Connectivity: Seasonality, Area 1
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 11 / 16

    View Slide

  25. Cross-shelf Connectivity: Seasonality, Area 1
    Mississippi outflow consistently causes cross-shelf transport
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 11 / 16

    View Slide

  26. Cross-shelf Connectivity: Seasonality, Area 2
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 12 / 16

    View Slide

  27. Cross-shelf Connectivity: Seasonality, Area 2
    (a) February 2005 (b) July 2006
    Loop current eddies do not have a seasonal cycle
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 12 / 16

    View Slide

  28. Cross-shelf Connectivity: Seasonality, Area 3
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 13 / 16

    View Slide

  29. Cross-shelf Connectivity: Seasonality, Area 3
    Mean winds from east-west in non-summer and from west-east in summer
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 13 / 16

    View Slide

  30. Cross-shelf Connectivity: Seasonality, Area 3
    Mean winds from east-west in non-summer and from west-east in summer
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 13 / 16

    View Slide

  31. Cross-shelf Connectivity: Seasonality, Area 4
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 14 / 16

    View Slide

  32. Cross-shelf Connectivity: Seasonality, Area 4
    Baroclinic shelf eddies in the summer
    Rob Hetland, http://pong.tamu.edu/ rob/mch/mayjune/sss 2004.mp4
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 14 / 16

    View Slide

  33. Cross-shelf Connectivity: Seasonality, Area 4
    Baroclinic shelf eddies in the summer
    Marta-Almeida, Hetland, & Zhang (2013), JGR.
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 14 / 16

    View Slide

  34. Cross-shelf Connectivity: Interannual Variability: Summer
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 15 / 16

    View Slide

  35. Thank you!
    Kristen Thyng (Texas A&M) ECM 2013 November 4, 2013 16 / 16

    View Slide