Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jepsen Introduction LT
Search
UENISHI Kota
May 13, 2015
Technology
2
410
Jepsen Introduction LT
Jepsenの紹介LT
UENISHI Kota
May 13, 2015
Tweet
Share
More Decks by UENISHI Kota
See All by UENISHI Kota
Storage Systems in Preferred Networks
kuenishi
0
66
Metadata Management in Distributed File Systems
kuenishi
2
540
Behind The Scenes: Cloud Native Storage System for AI
kuenishi
2
430
Apache Ozone behind Simulation and AI Industries
kuenishi
0
430
Distributed Deep Learning with Chainer and Hadoop
kuenishi
3
1.3k
A Few Ways to Accelerate Deep Learning
kuenishi
0
1.2k
Introducing Retz
kuenishi
5
1.2k
Introducing Retz and how to develop practical frameworks
kuenishi
3
780
Formalization and Proof of Distributed Systems (ja)
kuenishi
10
6.5k
Other Decks in Technology
See All in Technology
AIエージェントに必要なのはデータではなく文脈だった/ai-agent-context-graph-mybest
jonnojun
0
140
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
350
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
1
2.9k
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
190
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
120
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
130
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
620
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
260
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
260
ランサムウェア対策としてのpnpm導入のススメ
ishikawa_satoru
0
190
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.4k
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
730
Amusing Abliteration
ianozsvald
0
100
KATA
mclloyd
PRO
34
15k
WCS-LA-2024
lcolladotor
0
450
Art, The Web, and Tiny UX
lynnandtonic
304
21k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
67
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
67
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
[SF Ruby Conf 2025] Rails X
palkan
1
760
Transcript
2015/5/13 Dwango Internal Erlang/OTP study group, LT Kota UENISHI /
@kuenishi JEPSEN “CALL ME MAYBE”
“Call Me Maybe” WHAT EVEN IS JEPSEN?
Who plays a song “Call Me Maybe” A NAME OF
A SINGER
That can test many system with replication ALSO, A PARTITION
TOLERANCE TEST TOOL
IT HAS TESTED … • PostgreSQL • Redis (Sentinel, redux)
• MongoDB • Riak • ZooKeeper • NuoDB • Kafka • Cassandra • RabbitMQ • etcd and Consul • Elasticsearch • Aerospike (New!)
AND FOUND DATA LOSS ISSUE OF … • Redis (Sentinel,
redux) • MongoDB • Kafka • Cassandra • RabbitMQ • etcd • Elasticsearch • Aerospike
BOXES AND LINES n1 jepsen n2 n3 n4 n5
is implemented in Clojure TECHNICALLY JEPSEN .. • Emulates network
partition • By cutting network between virtual machines • While Jepsen concurrently continues writing data, • And finally verifies any writes are not lost
WHY PARTITION TOLERANCE IS IMPORTANT AND DIFFICULT?
• In the beginning was the failure and asynchrony •
Replication and Consensus next • Failover and recovery / Membership Change mess things • Implementation and runtime is complexed
• for x=1….n • list = get(x) • write(x, [a,
list]) • get(x) • => [1…n] ͱͳ͍ͬͯΕ linearizable
REFERENCES • C.R.Jepsen “Call Me Maybe” • Jepsen blog post
series • github.com/aphyr/jepsen • Kyle Kingsbury: @aphyr (sometimes NSFW) • “The Network Is Reliable” • https://queue.acm.org/detail.cfm?id=2655736