$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jepsen Introduction LT
Search
UENISHI Kota
May 13, 2015
Technology
2
400
Jepsen Introduction LT
Jepsenの紹介LT
UENISHI Kota
May 13, 2015
Tweet
Share
More Decks by UENISHI Kota
See All by UENISHI Kota
Storage Systems in Preferred Networks
kuenishi
0
57
Metadata Management in Distributed File Systems
kuenishi
2
530
Behind The Scenes: Cloud Native Storage System for AI
kuenishi
2
420
Apache Ozone behind Simulation and AI Industries
kuenishi
0
420
Distributed Deep Learning with Chainer and Hadoop
kuenishi
3
1.3k
A Few Ways to Accelerate Deep Learning
kuenishi
0
1.1k
Introducing Retz
kuenishi
5
1.2k
Introducing Retz and how to develop practical frameworks
kuenishi
3
760
Formalization and Proof of Distributed Systems (ja)
kuenishi
10
6.5k
Other Decks in Technology
See All in Technology
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
180
AI時代の新規LLMプロダクト開発: Findy Insightsを3ヶ月で立ち上げた舞台裏と振り返り
dakuon
0
390
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
590
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.1k
AlmaLinux + KVM + Cockpit で始めるお手軽仮想化基盤 ~ 開発環境などでの利用を想定して ~
koedoyoshida
0
150
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
0
170
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
2
550
Microsoft Agent 365 についてゆっくりじっくり理解する!
skmkzyk
0
440
MariaDB Connector/C のcaching_sha2_passwordプラグインの仕様について
boro1234
0
1k
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
2
180
AI との良い付き合い方を僕らは誰も知らない
asei
0
220
Connection-based OAuthから学ぶOAuth for AI Agents
flatt_security
0
260
Featured
See All Featured
Chasing Engaging Ingredients in Design
codingconduct
0
78
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
680
How to Talk to Developers About Accessibility
jct
1
83
Why Our Code Smells
bkeepers
PRO
340
57k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Raft: Consensus for Rubyists
vanstee
141
7.2k
Mind Mapping
helmedeiros
PRO
0
38
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Transcript
2015/5/13 Dwango Internal Erlang/OTP study group, LT Kota UENISHI /
@kuenishi JEPSEN “CALL ME MAYBE”
“Call Me Maybe” WHAT EVEN IS JEPSEN?
Who plays a song “Call Me Maybe” A NAME OF
A SINGER
That can test many system with replication ALSO, A PARTITION
TOLERANCE TEST TOOL
IT HAS TESTED … • PostgreSQL • Redis (Sentinel, redux)
• MongoDB • Riak • ZooKeeper • NuoDB • Kafka • Cassandra • RabbitMQ • etcd and Consul • Elasticsearch • Aerospike (New!)
AND FOUND DATA LOSS ISSUE OF … • Redis (Sentinel,
redux) • MongoDB • Kafka • Cassandra • RabbitMQ • etcd • Elasticsearch • Aerospike
BOXES AND LINES n1 jepsen n2 n3 n4 n5
is implemented in Clojure TECHNICALLY JEPSEN .. • Emulates network
partition • By cutting network between virtual machines • While Jepsen concurrently continues writing data, • And finally verifies any writes are not lost
WHY PARTITION TOLERANCE IS IMPORTANT AND DIFFICULT?
• In the beginning was the failure and asynchrony •
Replication and Consensus next • Failover and recovery / Membership Change mess things • Implementation and runtime is complexed
• for x=1….n • list = get(x) • write(x, [a,
list]) • get(x) • => [1…n] ͱͳ͍ͬͯΕ linearizable
REFERENCES • C.R.Jepsen “Call Me Maybe” • Jepsen blog post
series • github.com/aphyr/jepsen • Kyle Kingsbury: @aphyr (sometimes NSFW) • “The Network Is Reliable” • https://queue.acm.org/detail.cfm?id=2655736