Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jepsen Introduction LT
Search
UENISHI Kota
May 13, 2015
Technology
2
400
Jepsen Introduction LT
Jepsenの紹介LT
UENISHI Kota
May 13, 2015
Tweet
Share
More Decks by UENISHI Kota
See All by UENISHI Kota
Storage Systems in Preferred Networks
kuenishi
0
57
Metadata Management in Distributed File Systems
kuenishi
2
530
Behind The Scenes: Cloud Native Storage System for AI
kuenishi
2
420
Apache Ozone behind Simulation and AI Industries
kuenishi
0
410
Distributed Deep Learning with Chainer and Hadoop
kuenishi
3
1.3k
A Few Ways to Accelerate Deep Learning
kuenishi
0
1.1k
Introducing Retz
kuenishi
5
1.2k
Introducing Retz and how to develop practical frameworks
kuenishi
3
760
Formalization and Proof of Distributed Systems (ja)
kuenishi
10
6.5k
Other Decks in Technology
See All in Technology
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
13
11k
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
2
200
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
300
シニアソフトウェアエンジニアになるためには
kworkdev
PRO
3
170
AI駆動開発の実践とその未来
eltociear
0
130
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
1.9k
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
320
ガバメントクラウド利用システムのライフサイクルについて
techniczna
0
190
ChatGPTで論⽂は読めるのか
spatial_ai_network
11
29k
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
6
750
EM歴1年10ヶ月のぼくがぶち当たった苦悩とこれからへ向けて
maaaato
0
280
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
220
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Building Applications with DynamoDB
mza
96
6.8k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Making the Leap to Tech Lead
cromwellryan
135
9.7k
It's Worth the Effort
3n
187
29k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.3k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
GraphQLとの向き合い方2022年版
quramy
50
14k
Transcript
2015/5/13 Dwango Internal Erlang/OTP study group, LT Kota UENISHI /
@kuenishi JEPSEN “CALL ME MAYBE”
“Call Me Maybe” WHAT EVEN IS JEPSEN?
Who plays a song “Call Me Maybe” A NAME OF
A SINGER
That can test many system with replication ALSO, A PARTITION
TOLERANCE TEST TOOL
IT HAS TESTED … • PostgreSQL • Redis (Sentinel, redux)
• MongoDB • Riak • ZooKeeper • NuoDB • Kafka • Cassandra • RabbitMQ • etcd and Consul • Elasticsearch • Aerospike (New!)
AND FOUND DATA LOSS ISSUE OF … • Redis (Sentinel,
redux) • MongoDB • Kafka • Cassandra • RabbitMQ • etcd • Elasticsearch • Aerospike
BOXES AND LINES n1 jepsen n2 n3 n4 n5
is implemented in Clojure TECHNICALLY JEPSEN .. • Emulates network
partition • By cutting network between virtual machines • While Jepsen concurrently continues writing data, • And finally verifies any writes are not lost
WHY PARTITION TOLERANCE IS IMPORTANT AND DIFFICULT?
• In the beginning was the failure and asynchrony •
Replication and Consensus next • Failover and recovery / Membership Change mess things • Implementation and runtime is complexed
• for x=1….n • list = get(x) • write(x, [a,
list]) • get(x) • => [1…n] ͱͳ͍ͬͯΕ linearizable
REFERENCES • C.R.Jepsen “Call Me Maybe” • Jepsen blog post
series • github.com/aphyr/jepsen • Kyle Kingsbury: @aphyr (sometimes NSFW) • “The Network Is Reliable” • https://queue.acm.org/detail.cfm?id=2655736