Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jepsen Introduction LT
Search
UENISHI Kota
May 13, 2015
Technology
2
340
Jepsen Introduction LT
Jepsenの紹介LT
UENISHI Kota
May 13, 2015
Tweet
Share
More Decks by UENISHI Kota
See All by UENISHI Kota
Metadata Management in Distributed File Systems
kuenishi
2
470
Behind The Scenes: Cloud Native Storage System for AI
kuenishi
2
330
Apache Ozone behind Simulation and AI Industries
kuenishi
0
290
Distributed Deep Learning with Chainer and Hadoop
kuenishi
3
1.1k
A Few Ways to Accelerate Deep Learning
kuenishi
0
990
Introducing Retz
kuenishi
5
1.1k
Introducing Retz and how to develop practical frameworks
kuenishi
3
670
Formalization and Proof of Distributed Systems (ja)
kuenishi
10
6.3k
Mesos Frameworkの作り方 (How to Make Mesos Framework)
kuenishi
7
2.3k
Other Decks in Technology
See All in Technology
IBC 2024 動画技術関連レポート / IBC 2024 Report
cyberagentdevelopers
PRO
0
110
元旅行会社の情シス部員が教えるおすすめなre:Inventへの行き方 / What is the most efficient way to re:Invent
naospon
2
330
iOS/Androidで同じUI体験をネ イティブで作成する際に気をつ けたい落とし穴
fumiyasac0921
1
110
Oracle Cloud Infrastructureデータベース・クラウド:各バージョンのサポート期間
oracle4engineer
PRO
28
12k
Terraform Stacks入門 #HashiTalks
msato
0
350
【Startup CTO of the Year 2024 / Audience Award】アセンド取締役CTO 丹羽健
niwatakeru
0
870
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
地理情報データをデータベースに格納しよう~ GPUを活用した爆速データベース PG-Stromの紹介 ~
sakaik
1
150
隣接領域をBeyondするFinatextのエンジニア組織設計 / beyond-engineering-areas
stajima
1
270
データプロダクトの定義からはじめる、データコントラクト駆動なデータ基盤
chanyou0311
2
280
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
230
BLADE: An Attempt to Automate Penetration Testing Using Autonomous AI Agents
bbrbbq
0
290
Featured
See All Featured
Designing for Performance
lara
604
68k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
The Invisible Side of Design
smashingmag
298
50k
Why Our Code Smells
bkeepers
PRO
334
57k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
The Pragmatic Product Professional
lauravandoore
31
6.3k
Building Adaptive Systems
keathley
38
2.3k
Transcript
2015/5/13 Dwango Internal Erlang/OTP study group, LT Kota UENISHI /
@kuenishi JEPSEN “CALL ME MAYBE”
“Call Me Maybe” WHAT EVEN IS JEPSEN?
Who plays a song “Call Me Maybe” A NAME OF
A SINGER
That can test many system with replication ALSO, A PARTITION
TOLERANCE TEST TOOL
IT HAS TESTED … • PostgreSQL • Redis (Sentinel, redux)
• MongoDB • Riak • ZooKeeper • NuoDB • Kafka • Cassandra • RabbitMQ • etcd and Consul • Elasticsearch • Aerospike (New!)
AND FOUND DATA LOSS ISSUE OF … • Redis (Sentinel,
redux) • MongoDB • Kafka • Cassandra • RabbitMQ • etcd • Elasticsearch • Aerospike
BOXES AND LINES n1 jepsen n2 n3 n4 n5
is implemented in Clojure TECHNICALLY JEPSEN .. • Emulates network
partition • By cutting network between virtual machines • While Jepsen concurrently continues writing data, • And finally verifies any writes are not lost
WHY PARTITION TOLERANCE IS IMPORTANT AND DIFFICULT?
• In the beginning was the failure and asynchrony •
Replication and Consensus next • Failover and recovery / Membership Change mess things • Implementation and runtime is complexed
• for x=1….n • list = get(x) • write(x, [a,
list]) • get(x) • => [1…n] ͱͳ͍ͬͯΕ linearizable
REFERENCES • C.R.Jepsen “Call Me Maybe” • Jepsen blog post
series • github.com/aphyr/jepsen • Kyle Kingsbury: @aphyr (sometimes NSFW) • “The Network Is Reliable” • https://queue.acm.org/detail.cfm?id=2655736