Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jepsen Introduction LT
Search
UENISHI Kota
May 13, 2015
Technology
2
390
Jepsen Introduction LT
Jepsenの紹介LT
UENISHI Kota
May 13, 2015
Tweet
Share
More Decks by UENISHI Kota
See All by UENISHI Kota
Storage Systems in Preferred Networks
kuenishi
0
40
Metadata Management in Distributed File Systems
kuenishi
2
520
Behind The Scenes: Cloud Native Storage System for AI
kuenishi
2
410
Apache Ozone behind Simulation and AI Industries
kuenishi
0
380
Distributed Deep Learning with Chainer and Hadoop
kuenishi
3
1.2k
A Few Ways to Accelerate Deep Learning
kuenishi
0
1.1k
Introducing Retz
kuenishi
5
1.2k
Introducing Retz and how to develop practical frameworks
kuenishi
3
740
Formalization and Proof of Distributed Systems (ja)
kuenishi
10
6.4k
Other Decks in Technology
See All in Technology
【実演版】カンファレンス登壇者・スタッフにこそ知ってほしいマイクの使い方 / 大吉祥寺.pm 2025
arthur1
1
870
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
430
Evolución del razonamiento matemático de GPT-4.1 a GPT-5 - Data Aventura Summit 2025 & VSCode DevDays
lauchacarro
0
210
「Linux」という言葉が指すもの
sat
PRO
4
140
複数サービスを支えるマルチテナント型Batch MLプラットフォーム
lycorptech_jp
PRO
1
400
CDK CLIで使ってたあの機能、CDK Toolkit Libraryではどうやるの?
smt7174
4
190
ハードウェアとソフトウェアをつなぐ全てを内製している企業の E2E テストの作り方 / How to create E2E tests for a company that builds everything connecting hardware and software in-house
bitkey
PRO
1
150
まずはマネコンでちゃちゃっと作ってから、それをCDKにしてみよか。
yamada_r
2
110
はじめてのOSS開発からみえたGo言語の強み
shibukazu
1
300
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
2
220
Webブラウザ向け動画配信プレイヤーの 大規模リプレイスから得た知見と学び
yud0uhu
0
230
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
120
Featured
See All Featured
Six Lessons from altMBA
skipperchong
28
4k
The Pragmatic Product Professional
lauravandoore
36
6.9k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Scaling GitHub
holman
463
140k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
We Have a Design System, Now What?
morganepeng
53
7.8k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
YesSQL, Process and Tooling at Scale
rocio
173
14k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
Transcript
2015/5/13 Dwango Internal Erlang/OTP study group, LT Kota UENISHI /
@kuenishi JEPSEN “CALL ME MAYBE”
“Call Me Maybe” WHAT EVEN IS JEPSEN?
Who plays a song “Call Me Maybe” A NAME OF
A SINGER
That can test many system with replication ALSO, A PARTITION
TOLERANCE TEST TOOL
IT HAS TESTED … • PostgreSQL • Redis (Sentinel, redux)
• MongoDB • Riak • ZooKeeper • NuoDB • Kafka • Cassandra • RabbitMQ • etcd and Consul • Elasticsearch • Aerospike (New!)
AND FOUND DATA LOSS ISSUE OF … • Redis (Sentinel,
redux) • MongoDB • Kafka • Cassandra • RabbitMQ • etcd • Elasticsearch • Aerospike
BOXES AND LINES n1 jepsen n2 n3 n4 n5
is implemented in Clojure TECHNICALLY JEPSEN .. • Emulates network
partition • By cutting network between virtual machines • While Jepsen concurrently continues writing data, • And finally verifies any writes are not lost
WHY PARTITION TOLERANCE IS IMPORTANT AND DIFFICULT?
• In the beginning was the failure and asynchrony •
Replication and Consensus next • Failover and recovery / Membership Change mess things • Implementation and runtime is complexed
• for x=1….n • list = get(x) • write(x, [a,
list]) • get(x) • => [1…n] ͱͳ͍ͬͯΕ linearizable
REFERENCES • C.R.Jepsen “Call Me Maybe” • Jepsen blog post
series • github.com/aphyr/jepsen • Kyle Kingsbury: @aphyr (sometimes NSFW) • “The Network Is Reliable” • https://queue.acm.org/detail.cfm?id=2655736