Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Rekognitionを用いてフォロワーの男女比を出す
Search
Kazuki Ohashi
February 02, 2018
Technology
1
2.8k
Amazon Rekognitionを用いてフォロワーの男女比を出す
Amazon RekogntionとFace APIを比べながら、フォロワーの男女比を出してみました。
Kazuki Ohashi
February 02, 2018
Tweet
Share
More Decks by Kazuki Ohashi
See All by Kazuki Ohashi
larave_vue_graphql_supplementation
kzkohashi
1
840
Introduction to using GraphQL for a bit
kzkohashi
0
220
フォロワーがどの雑誌に興味があるのか可視化してみる / magazine-score
kzkohashi
0
660
Laravelを始めて DDDを実践するまで
kzkohashi
2
1.9k
Other Decks in Technology
See All in Technology
Zero Data Loss Autonomous Recovery Service サービス概要
oracle4engineer
PRO
2
7.8k
オフィスビルを監視しよう:フィジカル×デジタルにまたがるSLI/SLO設計と運用の難しさ / Monitoring Office Buildings: The Challenge of Physical-Digital SLI/SLO Design & Operation
bitkey
1
120
NewSQLや分散データベースを支えるRaftの仕組み - 仕組みを理解して知る得意不得意
hacomono
PRO
3
190
対話型音声AIアプリケーションの信頼性向上の取り組み
ivry_presentationmaterials
1
390
What’s new in Android development tools
yanzm
0
460
CDK Vibe Coding Fes
tomoki10
0
220
【あのMCPって、どんな処理してるの?】 AWS CDKでの開発で便利なAWS MCP Servers特集
yoshimi0227
4
290
AIの全社活用を推進するための安全なレールを敷いた話
shoheimitani
2
560
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
3
970
SRE不在の開発チームが障害対応と 向き合った100日間 / 100 days dealing with issues without SREs
shin1988
1
400
[ JAWS-UG千葉支部 x 彩の国埼玉支部 ]ムダ遣い卒業!FinOpsで始めるAWSコスト最適化の第一歩
sh_fk2
2
130
Contributing to Rails? Start with the Gems You Already Use
yahonda
2
110
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Language of Interfaces
destraynor
158
25k
Bash Introduction
62gerente
613
210k
Six Lessons from altMBA
skipperchong
28
3.9k
4 Signs Your Business is Dying
shpigford
184
22k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
GitHub's CSS Performance
jonrohan
1031
460k
KATA
mclloyd
30
14k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Why Our Code Smells
bkeepers
PRO
336
57k
Visualization
eitanlees
146
16k
Transcript
"NB[PO3FLPHOJUJPOΛ༻͍ͯ ϑΥϩϫʔͷஉঁൺΛग़͢ WEBΤϯδχΞษڧձ #05 େڮ Ұथ @kzkohashi
େڮҰथ!L[LPIBTIJ ΠϯϑϧΤϯαʔϚʔέςΟϯά αʔόαΠυ ϑϩϯτத৺ झຯΧϨʔϥΠε
ϑΥϩϫʔͷใ ݟͨ͜ͱ͋Γ·͔͢ʁ
4/4ͷϑΥϩϫʔใ *OTUBHSBNΠϯαΠτ 5XJUUFS"OBMZUJDT
ଞਓͷΓ͍ͨʂ
Ͳ͏ΕͰ͖ΔͩΖ͏ʁ ϑΥϩϫʔ ϑΥϩϫʔ
إೝࣝΛͬͯஉঁྨਪʁ w จࣈϕʔεͰͷஉঁྨਪͦ͠͏ w 4/4ʹΑͬͯจࣈ͕গͳ͍߹͕͋Δ w ϓϩϑΟʔϧը૾͔Βஉ͔ঁ͔ͳΜͱ͘ͳ͘ Θ͔Γͦ͏
બఆख๏ͷௐࠪ ֎෦"1* ࣗલ 'BDF"1* $MPVE7JTPO 7JTVBM3FDPHOJUJPO 0QFO#3 ࣌ؒͱ͑Δ͓ۚΛߟ͑ͯ֎෦"1*͔Βબఆʂ "NB[PO3FLPHOJUJPO
͜Μͳײ͡ 'BDF"1* "NB[PO3FDPHOJUJPO
બఆൺΔ w ຕͷ4/4ͷϓϩϑը૾Λ༻ҙ w உੑຕ ঁੑຕ ͦͷଞຕ w 'BDF"1*ͱ"NB[PO3FLPHOJUJPOͰൺֱ ͋ΔํͷૉΒ͍͠ϒϩάͰࣝผ͕͔ͳΓΑ͔ͬͨʂ
ൺͨ݁Ռ ਖ਼ छྨ உੑ ঁੑ ͦͷଞ Amazon Rekognition 112(68%) 174(75%)
512(92%) Face API 75(46%) 121(52%) 522(94%) ୯७ͳਖ਼"NB[PO3FLPHOJUJPO͕ଟ͍
ൺͨ݁Ռʢޡʣ छྨ ঁੑ Amazon Rekognition 13 Face API 5 छྨ
உੑ Amazon Rekognition 5 Face API 3 ͕͑ঁੑͷը૾ ͕͑உੑͷը૾ ޡ'BDF"1*ͷ΄͏͕গͳͦ͏
'BDF"1* "NB[PO3FLPHOJUJPO ޱͳͲݟ͑ͳ͍ͱ'BDF"1*ݕग़ͮ͠Β͍ʁ ݕग़ࣦഊ ݕग़ޭ
'BDF"1* "NB[PO3FLPHOJUJPO 4/4ը૾ਅਖ਼໘Λ͋·Γ͍ͯͳ͍ͨΊݕग़ʹ͕ࠩग़ͨʁ ݕग़ࣦഊ ݕग़ޭ
'BDF"1* "NB[PO3FLPHOJUJPO ࣝผޭ͚ͨ͠Ͳ Ұਓ͚ͩݕग़ ೋਓݕग़͚ͨ͠Ͳ ࣝผࣦഊ ݕग़ͪ͠Ό͑'BDF"1*ڧ͍ɾɾɾ
'BDF"1* "NB[PO3FLPHOJUJPO ͜͏͍͏͜ͱ͋Δʢসʣ ࣝผޭ͚ͨ͠Ͳ ͲͪΒঁੑͱޡೝࣝ
બఆ·ͱΊ w 'BDF"1*ͷ΄͏͕ਫ਼ྑͦ͞͏ w ͨͩɺޱͱ͔ӅΕͨΓ͍ͯ͠Δ4/4ը૾ͷݕग़ѱ͗͢Δ w ࣝผͱݕग़ͷόϥϯεͰ"NB[PO3FLPHOJUJPOʹܾఆ ʢ୯७ͳਖ਼ͳΒΑ͔ͬͨʣ "NB[PO3FLPHOJUJPO
"NB[PO3FLPHOJUJPOͱ w "84͕ఏڙ͍ͯ͠Δɺը૾ࣝผαʔϏε w إೝ͚ࣝͩͰͳ͘ɺΦϒδΣΫτʢؠͱ͔ʣͷݕग़ ൺֱͱ͔Ͱ͖Δ w ͍͍ͳͱࢥͬͨͷɺஉঁࣝผʹ৴པ͕͍͍ͭͯΔ ͍·͞Β
(FOEFS\ 7BMVF.BMF $POpEFODF ^ ৴པ ࣗͨͪͷαʔϏεʹԠͯ͡ᮢܾΊΕΔ
ΞʔΩςΫνϟ ϓϩϑը૾ μϯϩʔυ ϑΥϩϫʔใ σϑΥϧτը૾͔ ൱͔ Ξοϓϩʔυ ˞ ˞͓͍ۚͬͨͳ͍ͷͰɺσϑΥϧτը૾ͷਓল͍ͯΔ
IUUQL[LPIBTIJIBUFOBCMPHDPNFOUSZ ʢQZUIPOΛͬͯ03#ͱ1FSDFQUVBM)BTIͰը૾ͷྨࣅΛൺͯΈΔ ৴པͷᮢ உঁใ "NB[PO3FLPHOJUJPO KTPO
݁Ռ ͑ ঁੑ உੑ ࠓճͷγεςϜ ˞ ঁੑ உੑ ˞αϯϓϦϯάϥϯμϜͰׂ̍ఔ
·ͱΊ w ը૾ࣝผ"1*৭ʑ͋Δ w ༻్ʹ߹Θͤͯࣝผͱݕग़ͷόϥϯεͰબ w ϓϩϑը૾͚ͩͰஉঁൺͱΕͨ
͓·͚ ͜ͷൺʹຊʹͳΔͷ͔ࢼͨ͠ छྨ உੑ ঁੑ ͦͷଞ ࣗͰ͑Δ 65%(97) 35%(52) 12
Amazon Rekognition 46%(36) 54%(42) 22 Face API 51%(21) 49%(20) 121 ͳΔ΄Ͳɾɾɾ