Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Rekognitionを用いてフォロワーの男女比を出す
Search
Kazuki Ohashi
February 02, 2018
Technology
1
2.9k
Amazon Rekognitionを用いてフォロワーの男女比を出す
Amazon RekogntionとFace APIを比べながら、フォロワーの男女比を出してみました。
Kazuki Ohashi
February 02, 2018
Tweet
Share
More Decks by Kazuki Ohashi
See All by Kazuki Ohashi
larave_vue_graphql_supplementation
kzkohashi
1
860
Introduction to using GraphQL for a bit
kzkohashi
0
230
フォロワーがどの雑誌に興味があるのか可視化してみる / magazine-score
kzkohashi
0
680
Laravelを始めて DDDを実践するまで
kzkohashi
2
2k
Other Decks in Technology
See All in Technology
ESXi のAIOps だ!2025冬
unnowataru
0
410
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
210
AR Guitar: Expanding Guitar Performance from a Live House to Urban Space
ekito_station
0
270
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.5k
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
0
320
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
5
11k
Identity Management for Agentic AI 解説
fujie
0
520
Keynoteから見るAWSの頭の中
nrinetcom
PRO
1
110
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
2.5k
さくらのクラウド開発ふりかえり2025
kazeburo
2
1.2k
20251203_AIxIoTビジネス共創ラボ_第4回勉強会_BP山崎.pdf
iotcomjpadmin
0
150
技術選定、下から見るか?横から見るか?
masakiokuda
0
140
Featured
See All Featured
Evolving SEO for Evolving Search Engines
ryanjones
0
82
The World Runs on Bad Software
bkeepers
PRO
72
12k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
180
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
400
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
0
46
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
32
4 Signs Your Business is Dying
shpigford
187
22k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
200
A Tale of Four Properties
chriscoyier
162
23k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
320
Accessibility Awareness
sabderemane
0
26
Transcript
"NB[PO3FLPHOJUJPOΛ༻͍ͯ ϑΥϩϫʔͷஉঁൺΛग़͢ WEBΤϯδχΞษڧձ #05 େڮ Ұथ @kzkohashi
େڮҰथ!L[LPIBTIJ ΠϯϑϧΤϯαʔϚʔέςΟϯά αʔόαΠυ ϑϩϯτத৺ झຯΧϨʔϥΠε
ϑΥϩϫʔͷใ ݟͨ͜ͱ͋Γ·͔͢ʁ
4/4ͷϑΥϩϫʔใ *OTUBHSBNΠϯαΠτ 5XJUUFS"OBMZUJDT
ଞਓͷΓ͍ͨʂ
Ͳ͏ΕͰ͖ΔͩΖ͏ʁ ϑΥϩϫʔ ϑΥϩϫʔ
إೝࣝΛͬͯஉঁྨਪʁ w จࣈϕʔεͰͷஉঁྨਪͦ͠͏ w 4/4ʹΑͬͯจࣈ͕গͳ͍߹͕͋Δ w ϓϩϑΟʔϧը૾͔Βஉ͔ঁ͔ͳΜͱ͘ͳ͘ Θ͔Γͦ͏
બఆख๏ͷௐࠪ ֎෦"1* ࣗલ 'BDF"1* $MPVE7JTPO 7JTVBM3FDPHOJUJPO 0QFO#3 ࣌ؒͱ͑Δ͓ۚΛߟ͑ͯ֎෦"1*͔Βબఆʂ "NB[PO3FLPHOJUJPO
͜Μͳײ͡ 'BDF"1* "NB[PO3FDPHOJUJPO
બఆൺΔ w ຕͷ4/4ͷϓϩϑը૾Λ༻ҙ w உੑຕ ঁੑຕ ͦͷଞຕ w 'BDF"1*ͱ"NB[PO3FLPHOJUJPOͰൺֱ ͋ΔํͷૉΒ͍͠ϒϩάͰࣝผ͕͔ͳΓΑ͔ͬͨʂ
ൺͨ݁Ռ ਖ਼ छྨ உੑ ঁੑ ͦͷଞ Amazon Rekognition 112(68%) 174(75%)
512(92%) Face API 75(46%) 121(52%) 522(94%) ୯७ͳਖ਼"NB[PO3FLPHOJUJPO͕ଟ͍
ൺͨ݁Ռʢޡʣ छྨ ঁੑ Amazon Rekognition 13 Face API 5 छྨ
உੑ Amazon Rekognition 5 Face API 3 ͕͑ঁੑͷը૾ ͕͑உੑͷը૾ ޡ'BDF"1*ͷ΄͏͕গͳͦ͏
'BDF"1* "NB[PO3FLPHOJUJPO ޱͳͲݟ͑ͳ͍ͱ'BDF"1*ݕग़ͮ͠Β͍ʁ ݕग़ࣦഊ ݕग़ޭ
'BDF"1* "NB[PO3FLPHOJUJPO 4/4ը૾ਅਖ਼໘Λ͋·Γ͍ͯͳ͍ͨΊݕग़ʹ͕ࠩग़ͨʁ ݕग़ࣦഊ ݕग़ޭ
'BDF"1* "NB[PO3FLPHOJUJPO ࣝผޭ͚ͨ͠Ͳ Ұਓ͚ͩݕग़ ೋਓݕग़͚ͨ͠Ͳ ࣝผࣦഊ ݕग़ͪ͠Ό͑'BDF"1*ڧ͍ɾɾɾ
'BDF"1* "NB[PO3FLPHOJUJPO ͜͏͍͏͜ͱ͋Δʢসʣ ࣝผޭ͚ͨ͠Ͳ ͲͪΒঁੑͱޡೝࣝ
બఆ·ͱΊ w 'BDF"1*ͷ΄͏͕ਫ਼ྑͦ͞͏ w ͨͩɺޱͱ͔ӅΕͨΓ͍ͯ͠Δ4/4ը૾ͷݕग़ѱ͗͢Δ w ࣝผͱݕग़ͷόϥϯεͰ"NB[PO3FLPHOJUJPOʹܾఆ ʢ୯७ͳਖ਼ͳΒΑ͔ͬͨʣ "NB[PO3FLPHOJUJPO
"NB[PO3FLPHOJUJPOͱ w "84͕ఏڙ͍ͯ͠Δɺը૾ࣝผαʔϏε w إೝ͚ࣝͩͰͳ͘ɺΦϒδΣΫτʢؠͱ͔ʣͷݕग़ ൺֱͱ͔Ͱ͖Δ w ͍͍ͳͱࢥͬͨͷɺஉঁࣝผʹ৴པ͕͍͍ͭͯΔ ͍·͞Β
(FOEFS\ 7BMVF.BMF $POpEFODF ^ ৴པ ࣗͨͪͷαʔϏεʹԠͯ͡ᮢܾΊΕΔ
ΞʔΩςΫνϟ ϓϩϑը૾ μϯϩʔυ ϑΥϩϫʔใ σϑΥϧτը૾͔ ൱͔ Ξοϓϩʔυ ˞ ˞͓͍ۚͬͨͳ͍ͷͰɺσϑΥϧτը૾ͷਓল͍ͯΔ
IUUQL[LPIBTIJIBUFOBCMPHDPNFOUSZ ʢQZUIPOΛͬͯ03#ͱ1FSDFQUVBM)BTIͰը૾ͷྨࣅΛൺͯΈΔ ৴པͷᮢ உঁใ "NB[PO3FLPHOJUJPO KTPO
݁Ռ ͑ ঁੑ உੑ ࠓճͷγεςϜ ˞ ঁੑ உੑ ˞αϯϓϦϯάϥϯμϜͰׂ̍ఔ
·ͱΊ w ը૾ࣝผ"1*৭ʑ͋Δ w ༻్ʹ߹Θͤͯࣝผͱݕग़ͷόϥϯεͰબ w ϓϩϑը૾͚ͩͰஉঁൺͱΕͨ
͓·͚ ͜ͷൺʹຊʹͳΔͷ͔ࢼͨ͠ छྨ உੑ ঁੑ ͦͷଞ ࣗͰ͑Δ 65%(97) 35%(52) 12
Amazon Rekognition 46%(36) 54%(42) 22 Face API 51%(21) 49%(20) 121 ͳΔ΄Ͳɾɾɾ