Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Rekognitionを用いてフォロワーの男女比を出す
Search
Kazuki Ohashi
February 02, 2018
Technology
1
2.8k
Amazon Rekognitionを用いてフォロワーの男女比を出す
Amazon RekogntionとFace APIを比べながら、フォロワーの男女比を出してみました。
Kazuki Ohashi
February 02, 2018
Tweet
Share
More Decks by Kazuki Ohashi
See All by Kazuki Ohashi
larave_vue_graphql_supplementation
kzkohashi
1
840
Introduction to using GraphQL for a bit
kzkohashi
0
220
フォロワーがどの雑誌に興味があるのか可視化してみる / magazine-score
kzkohashi
0
670
Laravelを始めて DDDを実践するまで
kzkohashi
2
1.9k
Other Decks in Technology
See All in Technology
生成AI導入の効果を最大化する データ活用戦略
ham0215
0
160
AI時代の大規模データ活用とセキュリティ戦略
ken5scal
0
150
Amazon GuardDuty での脅威検出:脅威検出の実例から学ぶ
kintotechdev
0
120
【OptimizationNight】数理最適化のラストワンマイルとしてのUIUX
brainpadpr
2
490
テストを実行してSorbetのsigを書こう!
sansantech
PRO
1
110
薬屋のひとりごとにみるトラブルシューティング
tomokusaba
0
360
LTに影響を受けてテンプレリポジトリを作った話
hol1kgmg
0
370
いかにして命令の入れ替わりについて心配するのをやめ、メモリモデルを愛するようになったか(改)
nullpo_head
7
2.6k
Google Cloud で学ぶデータエンジニアリング入門 2025年版 #GoogleCloudNext / 20250805
kazaneya
PRO
22
5.4k
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
27
13k
Kiroでインフラ要件定義~テスト を実施してみた
nagisa53
3
370
バクラクによるコーポレート業務の自動運転 #BetAIDay
layerx
PRO
1
960
Featured
See All Featured
Site-Speed That Sticks
csswizardry
10
770
Designing Experiences People Love
moore
142
24k
Building an army of robots
kneath
306
45k
How to Think Like a Performance Engineer
csswizardry
25
1.8k
Documentation Writing (for coders)
carmenintech
73
5k
Code Reviewing Like a Champion
maltzj
524
40k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
332
22k
Art, The Web, and Tiny UX
lynnandtonic
301
21k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
760
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Transcript
"NB[PO3FLPHOJUJPOΛ༻͍ͯ ϑΥϩϫʔͷஉঁൺΛग़͢ WEBΤϯδχΞษڧձ #05 େڮ Ұथ @kzkohashi
େڮҰथ!L[LPIBTIJ ΠϯϑϧΤϯαʔϚʔέςΟϯά αʔόαΠυ ϑϩϯτத৺ झຯΧϨʔϥΠε
ϑΥϩϫʔͷใ ݟͨ͜ͱ͋Γ·͔͢ʁ
4/4ͷϑΥϩϫʔใ *OTUBHSBNΠϯαΠτ 5XJUUFS"OBMZUJDT
ଞਓͷΓ͍ͨʂ
Ͳ͏ΕͰ͖ΔͩΖ͏ʁ ϑΥϩϫʔ ϑΥϩϫʔ
إೝࣝΛͬͯஉঁྨਪʁ w จࣈϕʔεͰͷஉঁྨਪͦ͠͏ w 4/4ʹΑͬͯจࣈ͕গͳ͍߹͕͋Δ w ϓϩϑΟʔϧը૾͔Βஉ͔ঁ͔ͳΜͱ͘ͳ͘ Θ͔Γͦ͏
બఆख๏ͷௐࠪ ֎෦"1* ࣗલ 'BDF"1* $MPVE7JTPO 7JTVBM3FDPHOJUJPO 0QFO#3 ࣌ؒͱ͑Δ͓ۚΛߟ͑ͯ֎෦"1*͔Βબఆʂ "NB[PO3FLPHOJUJPO
͜Μͳײ͡ 'BDF"1* "NB[PO3FDPHOJUJPO
બఆൺΔ w ຕͷ4/4ͷϓϩϑը૾Λ༻ҙ w உੑຕ ঁੑຕ ͦͷଞຕ w 'BDF"1*ͱ"NB[PO3FLPHOJUJPOͰൺֱ ͋ΔํͷૉΒ͍͠ϒϩάͰࣝผ͕͔ͳΓΑ͔ͬͨʂ
ൺͨ݁Ռ ਖ਼ छྨ உੑ ঁੑ ͦͷଞ Amazon Rekognition 112(68%) 174(75%)
512(92%) Face API 75(46%) 121(52%) 522(94%) ୯७ͳਖ਼"NB[PO3FLPHOJUJPO͕ଟ͍
ൺͨ݁Ռʢޡʣ छྨ ঁੑ Amazon Rekognition 13 Face API 5 छྨ
உੑ Amazon Rekognition 5 Face API 3 ͕͑ঁੑͷը૾ ͕͑உੑͷը૾ ޡ'BDF"1*ͷ΄͏͕গͳͦ͏
'BDF"1* "NB[PO3FLPHOJUJPO ޱͳͲݟ͑ͳ͍ͱ'BDF"1*ݕग़ͮ͠Β͍ʁ ݕग़ࣦഊ ݕग़ޭ
'BDF"1* "NB[PO3FLPHOJUJPO 4/4ը૾ਅਖ਼໘Λ͋·Γ͍ͯͳ͍ͨΊݕग़ʹ͕ࠩग़ͨʁ ݕग़ࣦഊ ݕग़ޭ
'BDF"1* "NB[PO3FLPHOJUJPO ࣝผޭ͚ͨ͠Ͳ Ұਓ͚ͩݕग़ ೋਓݕग़͚ͨ͠Ͳ ࣝผࣦഊ ݕग़ͪ͠Ό͑'BDF"1*ڧ͍ɾɾɾ
'BDF"1* "NB[PO3FLPHOJUJPO ͜͏͍͏͜ͱ͋Δʢসʣ ࣝผޭ͚ͨ͠Ͳ ͲͪΒঁੑͱޡೝࣝ
બఆ·ͱΊ w 'BDF"1*ͷ΄͏͕ਫ਼ྑͦ͞͏ w ͨͩɺޱͱ͔ӅΕͨΓ͍ͯ͠Δ4/4ը૾ͷݕग़ѱ͗͢Δ w ࣝผͱݕग़ͷόϥϯεͰ"NB[PO3FLPHOJUJPOʹܾఆ ʢ୯७ͳਖ਼ͳΒΑ͔ͬͨʣ "NB[PO3FLPHOJUJPO
"NB[PO3FLPHOJUJPOͱ w "84͕ఏڙ͍ͯ͠Δɺը૾ࣝผαʔϏε w إೝ͚ࣝͩͰͳ͘ɺΦϒδΣΫτʢؠͱ͔ʣͷݕग़ ൺֱͱ͔Ͱ͖Δ w ͍͍ͳͱࢥͬͨͷɺஉঁࣝผʹ৴པ͕͍͍ͭͯΔ ͍·͞Β
(FOEFS\ 7BMVF.BMF $POpEFODF ^ ৴པ ࣗͨͪͷαʔϏεʹԠͯ͡ᮢܾΊΕΔ
ΞʔΩςΫνϟ ϓϩϑը૾ μϯϩʔυ ϑΥϩϫʔใ σϑΥϧτը૾͔ ൱͔ Ξοϓϩʔυ ˞ ˞͓͍ۚͬͨͳ͍ͷͰɺσϑΥϧτը૾ͷਓল͍ͯΔ
IUUQL[LPIBTIJIBUFOBCMPHDPNFOUSZ ʢQZUIPOΛͬͯ03#ͱ1FSDFQUVBM)BTIͰը૾ͷྨࣅΛൺͯΈΔ ৴པͷᮢ உঁใ "NB[PO3FLPHOJUJPO KTPO
݁Ռ ͑ ঁੑ உੑ ࠓճͷγεςϜ ˞ ঁੑ உੑ ˞αϯϓϦϯάϥϯμϜͰׂ̍ఔ
·ͱΊ w ը૾ࣝผ"1*৭ʑ͋Δ w ༻్ʹ߹Θͤͯࣝผͱݕग़ͷόϥϯεͰબ w ϓϩϑը૾͚ͩͰஉঁൺͱΕͨ
͓·͚ ͜ͷൺʹຊʹͳΔͷ͔ࢼͨ͠ छྨ உੑ ঁੑ ͦͷଞ ࣗͰ͑Δ 65%(97) 35%(52) 12
Amazon Rekognition 46%(36) 54%(42) 22 Face API 51%(21) 49%(20) 121 ͳΔ΄Ͳɾɾɾ