Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Geoindexing with MongoDB
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Leszek Krupiński
May 17, 2012
Programming
0
59
Geoindexing with MongoDB
Leszek Krupiński
May 17, 2012
Tweet
Share
More Decks by Leszek Krupiński
See All by Leszek Krupiński
So that the daemon won’t die
leafnode
2
400
Practical PHP7
leafnode
2
480
Dobrze posól swoje hasło
leafnode
0
120
Dobrze posól swoje hasło (z notatkami)
leafnode
0
110
PHPNG kontra HHVM
leafnode
0
110
PHPNG kontra HHVM (z notatkami)
leafnode
0
80
Ewolucja PHP: PHP 5.6, NG, PHP 7, HHVM
leafnode
2
300
Sculpin - Generowanie statycznych stron w PHP
leafnode
2
72
Skalowanie aplikacji PHP
leafnode
1
430
Other Decks in Programming
See All in Programming
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
630
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
dchart: charts from deck markup
ajstarks
3
990
CSC307 Lecture 01
javiergs
PRO
0
690
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
1.1k
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
240
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
190
AI巻き込み型コードレビューのススメ
nealle
0
120
Data-Centric Kaggle
isax1015
2
760
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
540
Featured
See All Featured
What does AI have to do with Human Rights?
axbom
PRO
0
2k
My Coaching Mixtape
mlcsv
0
46
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
Design in an AI World
tapps
0
140
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
WENDY [Excerpt]
tessaabrams
9
36k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
640
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
62
GraphQLとの向き合い方2022年版
quramy
50
14k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.9k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.5k
Transcript
Geoindexing with MongoDB Leszek Krupiński WebClusters 2012
About me
On-line since 1997
Funny times
1 hr of internet for 1 USD
None
None
First social site: geocities
My first web page
What do I do now
Day-time job Managing team of developers for Polish Air Force
Side: consulting, optimizing, desiging
Buzzwords incoming!
The Internet 2008
Web 2.0
http://en.wikipedia.org/wiki/File:Web_2.0_Map.svg CC-BY-SA-2.5
Be social in your bedroom
alone.
The Internet 2012
Web 3.0
None
Why geospatial?
Needs shifted
Why? Because they could.
None
None
None
How to implement?
Database. Duh.
Keep, but also query
Is there a person at 53.438522,14.52198? Nope. Is there a
person at 53.438522,14.52199? Nope. Is there a person at 53.438522,14.52199? Yeah, here’s Johnny!
Not too useful.
Give me nearby homies. Within the range of 1 km
there is: • Al Gore (53.438625,14.52103) • Bill Clinton (53.432531,14.55127) • Johnny Bravo (53.438286,14.52363)
Now that’s better.
Geoindexing. Nothing new.
Oracle, PostreSQL, Lucene/Solr, even MySQL (via extensions)
SELECT c.holding_company, c.location FROM competitor c, bank b WHERE b.site_id
= 1604 AND SDO_WITHIN_DISTANCE(c.location, b.location, ’distance=2 unit=mile’) = ’TRUE’ ORACLE
SQL is so last year
Let’s use something cool
MongoDB. Because all the cool kids use NoSQL now
None
Why MongoDB?
Choose your NoSQL wise.
NoSQL in MongoDB • Document –based • Queries (JS-like syntax)
• JSON-like storage
Why MongoDB? Use Cases • Archiving • Event logging •
Document and CMS • Gaming • High volume sites • Mobile • Operational datastore • Agile development • Real-time stats Features • Ad hoc queries • Indexing • Replication • Load Balancing • File Storage • Aggregation • Server-side JavaScript • Capped collections http://en.wikipedia.org/wiki/Mongodb
Back to geo.
{ loc: [ 52.0, 21.0 ], name: ”Warsaw”, type: ”City”
}
db.nodes.ensureIndex({loc: '2d'})
That’s it.
Query • Exact o db.places.find( { loc : [50,50] }
) • Near o db.places.find( { loc : { $near : [50,50] } } ) • Limit o db.places.find( { loc : { $near : [50,50] } } ).limit(20) • Distance o db.places.find( { loc : { $near : [50,50] , $maxDistance : 5 } } ).limit(20)
Compound index • db.places.ensureIndex( { location : "2d" , category
: 1 } ); • db.places.find( { location : { $near : [50,50] }, category : 'coffee‚ } );
Bound queries • box = [ [40.73083, -73.99756], [40.741404, -73.988135]
] • db.places.find( {"loc" : {"$within" : {"$box" : box }} } )
Problems
Units
Coordinates in arc units Distance in kilometers
In query
earthRadius = 6378 // km multi = earthRadius * PI
/ 180.0 range = 3000 // km … maxDistance : range * multi…
In results
pointDistance = distances[0].dis / multi
Earth is not flat.
Problem: can’t use linear distance
Earth isn’t flat too.
Solution? Use approximation.
MongoDB has it built-in distances = db.runCommand( { geoNear :
"points", near : [0, 0], spherical : true, maxDistance : range / earthRadius /* to radians */ } ).results
Focus: runCommand distances = db.runCommand({ geoNear : "points" …
Sort by distance Only with runCommand
Automatically sorted • db.runCommand( { geoNear : "places" , near
: [50,50], num : 10 } ); • { "ns" : "test.places", "results" : [ { "dis" : 69.29646421910687, "obj" : … }, { "dis" : 69.29646421910687, "obj" : … }, … ], … }
Demo
OpenStreetMaps database of Poland imported into MongoDB
14.411.552 nodes
3GB of raw XML data
PHP in virtual machine
Imported about 100.000 nodes every 10s.
Pretty cool, eh?
Kudos to Derick Rethans Part of this talk was inspired
by his talk
Questions?
Thanks! Rate me at https://joind.in/talk/view/6475
Geoindexing with MongoDB supplement Leszek Krupiński WebClusters 2012
Why MongoDB?
Evaluate.
PostGIS is cool too. (but it’s SQL, meh)
Why MongoDB? Use Cases • Archiving • Event logging •
Document and CMS • Gaming • High volume sites • Mobile • Operational datastore • Agile development • Real-time stats Features • Ad hoc queries • Indexing • Replication • Load Balancing • File Storage • Aggregation • Server-side JavaScript • Capped collections http://en.wikipedia.org/wiki/Mongodb
If you need other features of MongoDB, use it
If you don’t, evaluate.
Evaluate.
Demo (hopefully)
Questions?
Please leave feedback! Rate me at https://joind.in/6475