Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Geoindexing with MongoDB
Search
Leszek Krupiński
May 17, 2012
Programming
0
59
Geoindexing with MongoDB
Leszek Krupiński
May 17, 2012
Tweet
Share
More Decks by Leszek Krupiński
See All by Leszek Krupiński
So that the daemon won’t die
leafnode
2
400
Practical PHP7
leafnode
2
480
Dobrze posól swoje hasło
leafnode
0
120
Dobrze posól swoje hasło (z notatkami)
leafnode
0
110
PHPNG kontra HHVM
leafnode
0
110
PHPNG kontra HHVM (z notatkami)
leafnode
0
80
Ewolucja PHP: PHP 5.6, NG, PHP 7, HHVM
leafnode
2
300
Sculpin - Generowanie statycznych stron w PHP
leafnode
2
72
Skalowanie aplikacji PHP
leafnode
1
430
Other Decks in Programming
See All in Programming
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
980
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
6k
[KNOTS 2026登壇資料]AIで拡張‧交差する プロダクト開発のプロセス および携わるメンバーの役割
hisatake
0
250
Apache Iceberg V3 and migration to V3
tomtanaka
0
150
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
510
CSC307 Lecture 01
javiergs
PRO
0
690
dchart: charts from deck markup
ajstarks
3
990
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
130
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.3k
CSC307 Lecture 03
javiergs
PRO
1
490
Featured
See All Featured
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
79
Are puppies a ranking factor?
jonoalderson
1
2.7k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
580
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Building Applications with DynamoDB
mza
96
6.9k
Test your architecture with Archunit
thirion
1
2.1k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
Paper Plane (Part 1)
katiecoart
PRO
0
4k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
62
Typedesign – Prime Four
hannesfritz
42
2.9k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
First, design no harm
axbom
PRO
2
1.1k
Transcript
Geoindexing with MongoDB Leszek Krupiński WebClusters 2012
About me
On-line since 1997
Funny times
1 hr of internet for 1 USD
None
None
First social site: geocities
My first web page
What do I do now
Day-time job Managing team of developers for Polish Air Force
Side: consulting, optimizing, desiging
Buzzwords incoming!
The Internet 2008
Web 2.0
http://en.wikipedia.org/wiki/File:Web_2.0_Map.svg CC-BY-SA-2.5
Be social in your bedroom
alone.
The Internet 2012
Web 3.0
None
Why geospatial?
Needs shifted
Why? Because they could.
None
None
None
How to implement?
Database. Duh.
Keep, but also query
Is there a person at 53.438522,14.52198? Nope. Is there a
person at 53.438522,14.52199? Nope. Is there a person at 53.438522,14.52199? Yeah, here’s Johnny!
Not too useful.
Give me nearby homies. Within the range of 1 km
there is: • Al Gore (53.438625,14.52103) • Bill Clinton (53.432531,14.55127) • Johnny Bravo (53.438286,14.52363)
Now that’s better.
Geoindexing. Nothing new.
Oracle, PostreSQL, Lucene/Solr, even MySQL (via extensions)
SELECT c.holding_company, c.location FROM competitor c, bank b WHERE b.site_id
= 1604 AND SDO_WITHIN_DISTANCE(c.location, b.location, ’distance=2 unit=mile’) = ’TRUE’ ORACLE
SQL is so last year
Let’s use something cool
MongoDB. Because all the cool kids use NoSQL now
None
Why MongoDB?
Choose your NoSQL wise.
NoSQL in MongoDB • Document –based • Queries (JS-like syntax)
• JSON-like storage
Why MongoDB? Use Cases • Archiving • Event logging •
Document and CMS • Gaming • High volume sites • Mobile • Operational datastore • Agile development • Real-time stats Features • Ad hoc queries • Indexing • Replication • Load Balancing • File Storage • Aggregation • Server-side JavaScript • Capped collections http://en.wikipedia.org/wiki/Mongodb
Back to geo.
{ loc: [ 52.0, 21.0 ], name: ”Warsaw”, type: ”City”
}
db.nodes.ensureIndex({loc: '2d'})
That’s it.
Query • Exact o db.places.find( { loc : [50,50] }
) • Near o db.places.find( { loc : { $near : [50,50] } } ) • Limit o db.places.find( { loc : { $near : [50,50] } } ).limit(20) • Distance o db.places.find( { loc : { $near : [50,50] , $maxDistance : 5 } } ).limit(20)
Compound index • db.places.ensureIndex( { location : "2d" , category
: 1 } ); • db.places.find( { location : { $near : [50,50] }, category : 'coffee‚ } );
Bound queries • box = [ [40.73083, -73.99756], [40.741404, -73.988135]
] • db.places.find( {"loc" : {"$within" : {"$box" : box }} } )
Problems
Units
Coordinates in arc units Distance in kilometers
In query
earthRadius = 6378 // km multi = earthRadius * PI
/ 180.0 range = 3000 // km … maxDistance : range * multi…
In results
pointDistance = distances[0].dis / multi
Earth is not flat.
Problem: can’t use linear distance
Earth isn’t flat too.
Solution? Use approximation.
MongoDB has it built-in distances = db.runCommand( { geoNear :
"points", near : [0, 0], spherical : true, maxDistance : range / earthRadius /* to radians */ } ).results
Focus: runCommand distances = db.runCommand({ geoNear : "points" …
Sort by distance Only with runCommand
Automatically sorted • db.runCommand( { geoNear : "places" , near
: [50,50], num : 10 } ); • { "ns" : "test.places", "results" : [ { "dis" : 69.29646421910687, "obj" : … }, { "dis" : 69.29646421910687, "obj" : … }, … ], … }
Demo
OpenStreetMaps database of Poland imported into MongoDB
14.411.552 nodes
3GB of raw XML data
PHP in virtual machine
Imported about 100.000 nodes every 10s.
Pretty cool, eh?
Kudos to Derick Rethans Part of this talk was inspired
by his talk
Questions?
Thanks! Rate me at https://joind.in/talk/view/6475
Geoindexing with MongoDB supplement Leszek Krupiński WebClusters 2012
Why MongoDB?
Evaluate.
PostGIS is cool too. (but it’s SQL, meh)
Why MongoDB? Use Cases • Archiving • Event logging •
Document and CMS • Gaming • High volume sites • Mobile • Operational datastore • Agile development • Real-time stats Features • Ad hoc queries • Indexing • Replication • Load Balancing • File Storage • Aggregation • Server-side JavaScript • Capped collections http://en.wikipedia.org/wiki/Mongodb
If you need other features of MongoDB, use it
If you don’t, evaluate.
Evaluate.
Demo (hopefully)
Questions?
Please leave feedback! Rate me at https://joind.in/6475