Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Geoindexing with MongoDB
Search
Leszek Krupiński
May 17, 2012
Programming
0
59
Geoindexing with MongoDB
Leszek Krupiński
May 17, 2012
Tweet
Share
More Decks by Leszek Krupiński
See All by Leszek Krupiński
So that the daemon won’t die
leafnode
2
400
Practical PHP7
leafnode
2
480
Dobrze posól swoje hasło
leafnode
0
120
Dobrze posól swoje hasło (z notatkami)
leafnode
0
110
PHPNG kontra HHVM
leafnode
0
110
PHPNG kontra HHVM (z notatkami)
leafnode
0
80
Ewolucja PHP: PHP 5.6, NG, PHP 7, HHVM
leafnode
2
300
Sculpin - Generowanie statycznych stron w PHP
leafnode
2
72
Skalowanie aplikacji PHP
leafnode
1
430
Other Decks in Programming
See All in Programming
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
110
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
370
登壇資料を作る時に意識していること #登壇資料_findy
konifar
4
970
[KNOTS 2026登壇資料]AIで拡張‧交差する プロダクト開発のプロセス および携わるメンバーの役割
hisatake
0
250
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
高速開発のためのコード整理術
sutetotanuki
1
390
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
300
CSC307 Lecture 04
javiergs
PRO
0
660
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
130
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
CSC307 Lecture 08
javiergs
PRO
0
670
Featured
See All Featured
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
320
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
How to Talk to Developers About Accessibility
jct
2
130
Darren the Foodie - Storyboard
khoart
PRO
2
2.3k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
63
We Have a Design System, Now What?
morganepeng
54
8k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
270
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2k
Transcript
Geoindexing with MongoDB Leszek Krupiński WebClusters 2012
About me
On-line since 1997
Funny times
1 hr of internet for 1 USD
None
None
First social site: geocities
My first web page
What do I do now
Day-time job Managing team of developers for Polish Air Force
Side: consulting, optimizing, desiging
Buzzwords incoming!
The Internet 2008
Web 2.0
http://en.wikipedia.org/wiki/File:Web_2.0_Map.svg CC-BY-SA-2.5
Be social in your bedroom
alone.
The Internet 2012
Web 3.0
None
Why geospatial?
Needs shifted
Why? Because they could.
None
None
None
How to implement?
Database. Duh.
Keep, but also query
Is there a person at 53.438522,14.52198? Nope. Is there a
person at 53.438522,14.52199? Nope. Is there a person at 53.438522,14.52199? Yeah, here’s Johnny!
Not too useful.
Give me nearby homies. Within the range of 1 km
there is: • Al Gore (53.438625,14.52103) • Bill Clinton (53.432531,14.55127) • Johnny Bravo (53.438286,14.52363)
Now that’s better.
Geoindexing. Nothing new.
Oracle, PostreSQL, Lucene/Solr, even MySQL (via extensions)
SELECT c.holding_company, c.location FROM competitor c, bank b WHERE b.site_id
= 1604 AND SDO_WITHIN_DISTANCE(c.location, b.location, ’distance=2 unit=mile’) = ’TRUE’ ORACLE
SQL is so last year
Let’s use something cool
MongoDB. Because all the cool kids use NoSQL now
None
Why MongoDB?
Choose your NoSQL wise.
NoSQL in MongoDB • Document –based • Queries (JS-like syntax)
• JSON-like storage
Why MongoDB? Use Cases • Archiving • Event logging •
Document and CMS • Gaming • High volume sites • Mobile • Operational datastore • Agile development • Real-time stats Features • Ad hoc queries • Indexing • Replication • Load Balancing • File Storage • Aggregation • Server-side JavaScript • Capped collections http://en.wikipedia.org/wiki/Mongodb
Back to geo.
{ loc: [ 52.0, 21.0 ], name: ”Warsaw”, type: ”City”
}
db.nodes.ensureIndex({loc: '2d'})
That’s it.
Query • Exact o db.places.find( { loc : [50,50] }
) • Near o db.places.find( { loc : { $near : [50,50] } } ) • Limit o db.places.find( { loc : { $near : [50,50] } } ).limit(20) • Distance o db.places.find( { loc : { $near : [50,50] , $maxDistance : 5 } } ).limit(20)
Compound index • db.places.ensureIndex( { location : "2d" , category
: 1 } ); • db.places.find( { location : { $near : [50,50] }, category : 'coffee‚ } );
Bound queries • box = [ [40.73083, -73.99756], [40.741404, -73.988135]
] • db.places.find( {"loc" : {"$within" : {"$box" : box }} } )
Problems
Units
Coordinates in arc units Distance in kilometers
In query
earthRadius = 6378 // km multi = earthRadius * PI
/ 180.0 range = 3000 // km … maxDistance : range * multi…
In results
pointDistance = distances[0].dis / multi
Earth is not flat.
Problem: can’t use linear distance
Earth isn’t flat too.
Solution? Use approximation.
MongoDB has it built-in distances = db.runCommand( { geoNear :
"points", near : [0, 0], spherical : true, maxDistance : range / earthRadius /* to radians */ } ).results
Focus: runCommand distances = db.runCommand({ geoNear : "points" …
Sort by distance Only with runCommand
Automatically sorted • db.runCommand( { geoNear : "places" , near
: [50,50], num : 10 } ); • { "ns" : "test.places", "results" : [ { "dis" : 69.29646421910687, "obj" : … }, { "dis" : 69.29646421910687, "obj" : … }, … ], … }
Demo
OpenStreetMaps database of Poland imported into MongoDB
14.411.552 nodes
3GB of raw XML data
PHP in virtual machine
Imported about 100.000 nodes every 10s.
Pretty cool, eh?
Kudos to Derick Rethans Part of this talk was inspired
by his talk
Questions?
Thanks! Rate me at https://joind.in/talk/view/6475
Geoindexing with MongoDB supplement Leszek Krupiński WebClusters 2012
Why MongoDB?
Evaluate.
PostGIS is cool too. (but it’s SQL, meh)
Why MongoDB? Use Cases • Archiving • Event logging •
Document and CMS • Gaming • High volume sites • Mobile • Operational datastore • Agile development • Real-time stats Features • Ad hoc queries • Indexing • Replication • Load Balancing • File Storage • Aggregation • Server-side JavaScript • Capped collections http://en.wikipedia.org/wiki/Mongodb
If you need other features of MongoDB, use it
If you don’t, evaluate.
Evaluate.
Demo (hopefully)
Questions?
Please leave feedback! Rate me at https://joind.in/6475