Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Geoindexing with MongoDB
Search
Leszek Krupiński
May 17, 2012
Programming
0
56
Geoindexing with MongoDB
Leszek Krupiński
May 17, 2012
Tweet
Share
More Decks by Leszek Krupiński
See All by Leszek Krupiński
So that the daemon won’t die
leafnode
2
390
Practical PHP7
leafnode
2
410
Dobrze posól swoje hasło
leafnode
0
80
Dobrze posól swoje hasło (z notatkami)
leafnode
0
68
PHPNG kontra HHVM
leafnode
0
79
PHPNG kontra HHVM (z notatkami)
leafnode
0
45
Ewolucja PHP: PHP 5.6, NG, PHP 7, HHVM
leafnode
2
280
Sculpin - Generowanie statycznych stron w PHP
leafnode
2
51
Skalowanie aplikacji PHP
leafnode
1
390
Other Decks in Programming
See All in Programming
アジャイルを支えるテストアーキテクチャ設計/Test Architecting for Agile
goyoki
9
3.2k
シェーダーで魅せるMapLibreの動的ラスタータイル
satoshi7190
1
470
Better Code Design in PHP
afilina
PRO
0
120
開発効率向上のためのリファクタリングの一歩目の選択肢 ~コード分割~ / JJUG CCC 2024 Fall
ryounasso
0
440
Nurturing OpenJDK distribution: Eclipse Temurin Success History and plan
ivargrimstad
0
710
Realtime API 入門
riofujimon
0
150
Jakarta EE meets AI
ivargrimstad
0
350
Jakarta Concurrencyによる並行処理プログラミングの始め方 (JJUG CCC 2024 Fall)
tnagao7
1
280
Contemporary Test Cases
maaretp
0
120
What’s New in Compose Multiplatform - A Live Tour (droidcon London 2024)
zsmb
1
470
距離関数を極める! / SESSIONS 2024
gam0022
0
240
as(型アサーション)を書く前にできること
marokanatani
7
2.3k
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Writing Fast Ruby
sferik
627
61k
Imperfection Machines: The Place of Print at Facebook
scottboms
264
13k
Typedesign – Prime Four
hannesfritz
40
2.4k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
47
2.1k
What's in a price? How to price your products and services
michaelherold
243
12k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
27
2k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
43
2.2k
Transcript
Geoindexing with MongoDB Leszek Krupiński WebClusters 2012
About me
On-line since 1997
Funny times
1 hr of internet for 1 USD
None
None
First social site: geocities
My first web page
What do I do now
Day-time job Managing team of developers for Polish Air Force
Side: consulting, optimizing, desiging
Buzzwords incoming!
The Internet 2008
Web 2.0
http://en.wikipedia.org/wiki/File:Web_2.0_Map.svg CC-BY-SA-2.5
Be social in your bedroom
alone.
The Internet 2012
Web 3.0
None
Why geospatial?
Needs shifted
Why? Because they could.
None
None
None
How to implement?
Database. Duh.
Keep, but also query
Is there a person at 53.438522,14.52198? Nope. Is there a
person at 53.438522,14.52199? Nope. Is there a person at 53.438522,14.52199? Yeah, here’s Johnny!
Not too useful.
Give me nearby homies. Within the range of 1 km
there is: • Al Gore (53.438625,14.52103) • Bill Clinton (53.432531,14.55127) • Johnny Bravo (53.438286,14.52363)
Now that’s better.
Geoindexing. Nothing new.
Oracle, PostreSQL, Lucene/Solr, even MySQL (via extensions)
SELECT c.holding_company, c.location FROM competitor c, bank b WHERE b.site_id
= 1604 AND SDO_WITHIN_DISTANCE(c.location, b.location, ’distance=2 unit=mile’) = ’TRUE’ ORACLE
SQL is so last year
Let’s use something cool
MongoDB. Because all the cool kids use NoSQL now
None
Why MongoDB?
Choose your NoSQL wise.
NoSQL in MongoDB • Document –based • Queries (JS-like syntax)
• JSON-like storage
Why MongoDB? Use Cases • Archiving • Event logging •
Document and CMS • Gaming • High volume sites • Mobile • Operational datastore • Agile development • Real-time stats Features • Ad hoc queries • Indexing • Replication • Load Balancing • File Storage • Aggregation • Server-side JavaScript • Capped collections http://en.wikipedia.org/wiki/Mongodb
Back to geo.
{ loc: [ 52.0, 21.0 ], name: ”Warsaw”, type: ”City”
}
db.nodes.ensureIndex({loc: '2d'})
That’s it.
Query • Exact o db.places.find( { loc : [50,50] }
) • Near o db.places.find( { loc : { $near : [50,50] } } ) • Limit o db.places.find( { loc : { $near : [50,50] } } ).limit(20) • Distance o db.places.find( { loc : { $near : [50,50] , $maxDistance : 5 } } ).limit(20)
Compound index • db.places.ensureIndex( { location : "2d" , category
: 1 } ); • db.places.find( { location : { $near : [50,50] }, category : 'coffee‚ } );
Bound queries • box = [ [40.73083, -73.99756], [40.741404, -73.988135]
] • db.places.find( {"loc" : {"$within" : {"$box" : box }} } )
Problems
Units
Coordinates in arc units Distance in kilometers
In query
earthRadius = 6378 // km multi = earthRadius * PI
/ 180.0 range = 3000 // km … maxDistance : range * multi…
In results
pointDistance = distances[0].dis / multi
Earth is not flat.
Problem: can’t use linear distance
Earth isn’t flat too.
Solution? Use approximation.
MongoDB has it built-in distances = db.runCommand( { geoNear :
"points", near : [0, 0], spherical : true, maxDistance : range / earthRadius /* to radians */ } ).results
Focus: runCommand distances = db.runCommand({ geoNear : "points" …
Sort by distance Only with runCommand
Automatically sorted • db.runCommand( { geoNear : "places" , near
: [50,50], num : 10 } ); • { "ns" : "test.places", "results" : [ { "dis" : 69.29646421910687, "obj" : … }, { "dis" : 69.29646421910687, "obj" : … }, … ], … }
Demo
OpenStreetMaps database of Poland imported into MongoDB
14.411.552 nodes
3GB of raw XML data
PHP in virtual machine
Imported about 100.000 nodes every 10s.
Pretty cool, eh?
Kudos to Derick Rethans Part of this talk was inspired
by his talk
Questions?
Thanks! Rate me at https://joind.in/talk/view/6475
Geoindexing with MongoDB supplement Leszek Krupiński WebClusters 2012
Why MongoDB?
Evaluate.
PostGIS is cool too. (but it’s SQL, meh)
Why MongoDB? Use Cases • Archiving • Event logging •
Document and CMS • Gaming • High volume sites • Mobile • Operational datastore • Agile development • Real-time stats Features • Ad hoc queries • Indexing • Replication • Load Balancing • File Storage • Aggregation • Server-side JavaScript • Capped collections http://en.wikipedia.org/wiki/Mongodb
If you need other features of MongoDB, use it
If you don’t, evaluate.
Evaluate.
Demo (hopefully)
Questions?
Please leave feedback! Rate me at https://joind.in/6475