Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data & Machine Learning at 90 Seconds
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Dat Le
February 26, 2019
Technology
0
100
Data & Machine Learning at 90 Seconds
BigData.SG & Hadoop.SG meetup - Feb 26, 2019
Dat Le
February 26, 2019
Tweet
Share
More Decks by Dat Le
See All by Dat Le
Building your data science capabilities - Nulab Drinking Code 2018-08-31
lenguyenthedat
0
120
Building your data science capabilities - Asia InsurTech 2018-04-23
lenguyenthedat
0
550
Data Science at honestbee - DSSG 2016-10-24
lenguyenthedat
5
2.6k
Data Analytics Infrastructure - DSSG 2015-11-23
lenguyenthedat
2
420
Rakuten - Viki Data Challenge Solution.
lenguyenthedat
0
700
Data Infrastructure with Amazon Web Services
lenguyenthedat
1
200
Other Decks in Technology
See All in Technology
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
20260204_Midosuji_Tech
takuyay0ne
1
160
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
190
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
450
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
590
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
Context Engineeringの取り組み
nutslove
0
360
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
110
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
0
2.4k
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.4k
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
170
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
120
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
The SEO Collaboration Effect
kristinabergwall1
0
350
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
190
Paper Plane
katiecoart
PRO
0
46k
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
130
Transcript
DATA AND MACHINE LEARNING AT 90 SECONDS @lenguyenthedat . Director
- Data Science & Engineering at 90 Seconds BigData.SG & Hadoop.SG meetup @ AWS
90 Seconds in 90 seconds 1. INTRODUCTION
Cloud Video Creation Platform Backed by Sequoia since 2016 Trusted
by the world’s biggest brands
90 Seconds is a team of over 180 people from
18 nationalities across 7 global bases, including Singapore, Auckland, Sydney, Tokyo, London, Berlin and San Francisco. Where we are located
2. DATA AT 90 SECONDS
THE DATA TEAM AT 90 SECONDS Engineering Data Marketing Finance
Product Talent Sales Operation Customer Experience
THE DATA TEAM AT 90 SECONDS Data Engineer Data Analyst
Machine Learning Engineer DATA WAREHOUSE DATA PIPELINES INFRASTRUCTURE INTEGRATIONS MACHINE LEARNING, DATA PIPELINES INTEGRATIONS BUSINESS INTELLIGENCE, DATA PIPELINES, VISUALIZATION, INSIGHTS
THE DATA STACK AT 90 SECONDS
None
3. CASE STUDY: VIDEO SEARCH ENGINE
CASE STUDY: VIDEO SEARCH ENGINE Videos in, Data out! We
have produced 30,000 videos till date
CASE STUDY: VIDEO SEARCH ENGINE WHAT IF THERE IS A
SEARCH ENGINE THAT ALLOWS INTERNAL STAFF TO SEARCH FOR VIDEOS BY THEIR ENTITIES?
CASE STUDY: VIDEO SEARCH ENGINE
CASE STUDY: VIDEO SEARCH ENGINE
CASE STUDY: VIDEO SEARCH ENGINE
CASE STUDY: VIDEO SEARCH ENGINE
CASE STUDY: VIDEO SEARCH ENGINE
4. FOOD FOR THOUGHT: HOW LONG DID IT TAKE
FOR YOUR MACHINE LEARNING MODEL TO GO LIVE ON PRODUCTION? one of the most important metric of a successful data team
1. FIND THE RIGHT TALENTS AND TEAM COMPOSITION
2. DATA INFRASTRUCTURE. BUILD IT FIRST!
3. COMMUNICATION & PRIORITIZATION BUY-IN AND UPWARDS MANAGEMENT
4. DO NOT OVERCOOK. GO FOR AN MVP AND ITERATE!
THANK YOU!