Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Speaker Deck
PRO
Sign in
Sign up for free
ML開発におけるML PMの関わり方事例
LINE Developers
PRO
December 07, 2022
Technology
1
830
ML開発におけるML PMの関わり方事例
仁ノ平 将人(LINE株式会社)
髙久 裕央(LINE株式会社)
「第26回 MLOps 勉強会」の発表資料です
https://mlops.connpass.com/event/265554/
LINE Developers
PRO
December 07, 2022
Tweet
Share
More Decks by LINE Developers
See All by LINE Developers
SONiCをLINEのClosネットワークに導入した話 / A story to adopt SONiC in LINE’s Clos Network
line_developers
PRO
1
75
ML PM, DS PMってどんな仕事をしているの?
line_developers
PRO
1
250
LINE iOSエンジニアの日々 / LINE iOS Engineer Days
line_developers
PRO
1
150
“Do you have a virtual router?” Discuss how to use virtual routers
line_developers
PRO
0
590
LINEにおけるネットワーク自動化チーム / Network Automation Team in LINE
line_developers
PRO
0
320
ひとりで書ける! 日英文章作成のコツ / Do-it-yourself! - Tips for writing in Japanese-English
line_developers
PRO
1
430
UIT Survey 2022
line_developers
PRO
0
120
LINE’s Journey; Road to 4 Million Cores in the Private Cloud
line_developers
PRO
0
79
Investigating Kafka performance issue caused by lock contention in xfs
line_developers
PRO
0
250
Other Decks in Technology
See All in Technology
ユーザーテストガイドライン VERSION 2.0
kouzoukaikaku
0
1.5k
Oracle Cloud Infrastructure:2023年1月度サービス・アップデート
oracle4engineer
PRO
0
170
AI Builderについて
miyakemito
1
970
SmartHRからOktaへのSCIM連携で作り出すHRドリブンのアカウント管理
jousysmiler
1
120
NGINXENG JP#2 - 2-NGINXの動作の詳細
hiropo20
1
140
OpenShiftクラスターのアップグレード自動化への挑戦! / OpenShift Cluster Upgrade Automation
skitamura7446
0
210
AWS Cloud Forensics & Incident Response
e11i0t_4lders0n
0
410
Multi-Cloud Gatewayでデータを統治せよ!/ Data Federation with MCG
tutsunom
1
350
スクラム導入して変わったチーム、組織のありかた
yumechi
0
210
OCIコンテナサービス関連の技術詳細 /oke-ocir-details
oracle4engineer
PRO
0
780
CSS Variable をもっと活用する / Kyoto.js 18
spring_raining
2
1k
CUEとKubernetesカスタムオペレータを用いた新しいネットワークコントローラをつくってみた
hrk091
1
290
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
224
50k
The Invisible Customer
myddelton
113
12k
Documentation Writing (for coders)
carmenintech
51
2.9k
Producing Creativity
orderedlist
PRO
335
38k
Fantastic passwords and where to find them - at NoRuKo
philnash
32
1.9k
How to Ace a Technical Interview
jacobian
270
21k
Designing the Hi-DPI Web
ddemaree
273
32k
Web Components: a chance to create the future
zenorocha
304
40k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
31
20k
Stop Working from a Prison Cell
hatefulcrawdad
263
18k
5 minutes of I Can Smell Your CMS
philhawksworth
198
18k
Infographics Made Easy
chrislema
235
17k
Transcript
.-։ൃʹ͓͚Δ .-1.ͷؔΘΓํࣄྫ .BTBUP/JOPIJSB )JSPP 5BLBLV !%4.-1MBOOJOH5FBN
͡Ίʹ .BDIJOF-FBSOJOH৫ͷऔΓΈ .-%41MBOOJOH5FBN .-1.ͷ͓ࣄ ࠷ޙʹ
Contents
͋͘·ͰҰྫͰ͋Δ͜ͱྃ͝ঝ͍ͩ͘͞ ɾ.-։ൃʹ͓͚Δ1.ͷؔΘΓํͷҰࣄྫͱղऍ͍ͩ͘͞ ɾ৫ମ੍ɺ1+5ମ੍ʹΑͬͯ1.ͷ.-։ൃͷؔΘΓํେ͖͘มΘΓ·͢ ɾςΫχΧϧͳͰͳ͘ϙΤϜͳʹͳΓ·͢ ɾͲ͏ͯ͠1.ͷʹͳΔͱɺϙΤϜͳʹͳΓ·͢ ɾʮ($1Ͱʯʮ"84ͰʯʮLTͰʯʮNMGMPXΛ͏ͱʯͱ͍ͬͨςΫχΧϧͳείʔϓ֎ ɾ1.ͱʁ ɾ༷ʑͳ୯ޠͷུޠͰ͋Δ 1SPEVDU.BOBHFS 1SPKFDU.BOBHFS
1SPHSBN.BOBHFS ɾ࣮ࡍͷۀͰɺͦΕͧΕΛ෯͘ߦ
.BTBUP/JOPIJSB .-%41MBOOJOH5FBN ୲ ɾ .- 1FSTPOB ଐੑਪఆ 'FBUVSF7FDUPS ԣஅಛྔ -*/&Ϊϑτ
3% ɾ %4 -*/&1BZ )JSPP5BLBLV .-%41MBOOJOH5FBN ୲ ɾ .- 4IPQ 4UJDLFS ελϯϓ 5IFNF ணͤସ͑ %FNBFDBO
.BDIJOF-FBSOJOH৫ͷऔΓΈ Data Science Center / Data Engineering Center
.-৫Ͱ༷ʑͳϥΠϒϥϦɾιϦϡʔγϣϯΛ։ൃ 3FDPNNFOEBUJPO &YTUJDLFST 4UJDLFS"VUP5BHHJOH • スタンプ画像から 意味的なタグを推測し、⾃動付与 • 2021年〜、深層学習モデルを更新(Efficient Net)
6TFS1FSTPOB1SFEJDUJPO • サービス横断のユーザ⾏動ログを利⽤して、DNN系のロジックで推定(〜数億ユーザ) • 継続的にリファクタリングやロジック改善等を進めており、MLP Mixerなども利⽤ LINE for Business 2022年10-2023年3⽉期 媒体資料より https://www.linebiz.com/jp/download/ 出前館 %SJWFS .FSDIBOU 6TFS 3FR GPSPSEFS 3FRGPS EFMJWFSZ 3FRGPS QSFQBSBUJPO QJDLVQ EFMJWFSZ 複数の機械学習のコンポーネントを提供し、オンラ イン予測のためのパイプラインも個別に構築 For Users • 商品の推薦(≒ 何を注⽂すればよいか︖) For Demae-can (as a broker/仲介者) • オーダーの配達依頼(≒ 誰に配達を依頼すればよいか?) For Drivers • エリア単位での直近需要の予測(≒ どこで待てばよいか?) • レストランの準備時間予測(≒ いつ受け取りに⾏けばよい か?) 4NBSU$IBOOFM トークリスト上部にコンテンツ・広告を表⽰ • 2段構成で、ML室は下記の両⽅を提供 1. 個別サービスのコンテンツ向けターゲティングロジック (様々な組織が供給) 2. 最終的にコンテンツ or 広告を1つ選定 -JCSB4VJUF MLの開発効率化 + DSの検証効率化のための内製ツール 画⾯設計・デザインをUIのチームに依頼し、バックエンドをML室で開発 CMS for A/B Test & Rollout Dashboard for A/B Test 推薦結果の可視化 $SPTT4FSWJDF6TFS$POUFOU'FBUVSFT • 事業横断でML向けのデータを整備し、社内の他ML組織に提供 • 表現学習により、密ベクトル化したデータなども作成 .-#BUDI"1*T MLプラットフォーム化により、開発したモデルの再利⽤性や開発効率などを⼤幅に向上 0XO-JCTGPS%FW&GGJDJFODZ • cumin: データアクセスの抽象化 • swimmy: RPC to k8s cluster • ghee: 分散並列処理(転送 & 演算) • ghee-models: MLモデル(python) • masala: MLモデル(yaml)
.-৫ͷྺ࢙ 2018 • 3FMFBTFSFDPNNFOEFSTUP NVMUJQMFTFSWJDFT • *OJUJBMBEPQUJPOPG(16JO QSPEVDUJPO • -JCSBEFTJHOJNQM
• 4NBSU$IBOOFM • -JCSBTVQQPSUJO NVMUJQMFTFSWJDFT TFMEPNMZVTFEJO.- • (IFFNPEFMT FUD GPSNPEFMJNQM $PNNPOJ[BUJPO • %//CBTFE SFDPNNFOEFSTJO NPTUTFSWJDFT • %FNBFDBOXPOMJOF JOGFSFODJOH • .-"1*T • .-0QT • 0OMJOF.- • 0OEFWJDF.- -'- • .-1SJWBDZ • &UD 2019 2020 2021 'SPN.-NPEFMJOHUPQMBUGPSNEFWFMPQNFOU 2022 • ,TDMVTUFS • .-NPEFM JNQSPWFNFOUTWJB -JCSB
.-৫ҎԼͷνʔϜ͔ΒΓཱ͓ͬͯΓ·͢ ࣌ .-4PMνʔϜ -*/&ϚϯΨ-*/&(JGUͳͲͷϑΝϛϦʔαʔϏε͚ͷਪનϩδοΫͷ։ൃɻ ग़લ͚ؗͷ.-ͷ։ൃͰɺʮॴɾ࣌ؒผͰͷधཁͷ༧ଌʯʮୡ࣌ؒͷ༧ଌʯͳ ͲɺΦϯϥΠϯͷσʔλ&5-ਪ͕ඞཁͳ.-γεςϜͷ։ൃʹྗ .-4PMνʔϜ -*/&ެࣜΞΧϯτͷϝοηʔδ৴࠷దԽɺ֤छαʔϏε͚ͷਪનͳͲΛ࣮ࢪ %41.-νʔϜ ࠂ৴ʹ༻͍ΔಛྔΤϯδχΞϦϯάɺ֎෦ഔମ͚৴γεςϜʢ-*/&ࠂ
ωοτϫʔΫʣ͚ͷ.-࠷దԽΛ࣮ࢪɻࠂΫϦΤΠςΟϒͷ৹ࠪΛߦ͏.-ج൫ͷ ։ൃͳͲʹணख .-1SJWBDZνʔϜ ϓϥΠόγʔۀҬͷߴ͍ઐੑΛ͓࣋ͬͯΓɺ'FEFSBUFE-FBSOJOHͱݺΕΔٕज़Λ αʔϏεಋೖ͢ΔϓϩδΣΫτʹࢀըɻݚڀʹྗ͓ͯ͠ΓɺτοϓΧϯϑΝϨϯε ʹଟจ͕࠾͞Ε͍ͯΔ .-%FWνʔϜ େنσʔλΛѻ͏ͨΊͷɺಠࣗ.-Ϟσϧ܈ͷ࣮උɺαʔϏεԣஅಛྔΛ׆༻ ͚ͨࣾ͠ͷ.-"1*։ൃɺ.-0QT͚ͷ౷ܭྔऩूγεςϜͷઃܭɾ։ൃͳͲΛ࣮ ࢪɻ'FEFSBUFE-FBSOJOHͷٕज़։ൃਐΊ͍ͯΔ .-*OGSBνʔϜ ػցֶशΤϯδχΞͷͨΊͷɺLT "JSGMPX $*$%ڥͳͲͷج൫උɺ͓Αͼ"1*ɾ ࢹγεςϜͳͲͷ։ൃӡ༻Λߦ͍ɺ৴པੑͷߴ͍αʔϏεΛఏڙɻۙͰɺػցֶ श༻్ͷΦϯϥΠϯಛྔετΞɺ.-͚ͷ%BUBϦωʔδγεςϜͳͲ։ൃ .-4PMνʔϜ αʔϏεԣஅͷಛྔͷඋɾӡ༻͓ΑͼɺͦͷσʔλΛར༻ͨ͠Ϣʔβଐੑͷਪఆͳ ͲΛ࣮ࢪ ɿ.-ΤϯδχΞ
.-৫ҎԼͷνʔϜ͔ΒΓཱ͓ͬͯΓ·͢ ࣌ .-4PMνʔϜ -*/&ϚϯΨ-*/&(JGUͳͲͷϑΝϛϦʔαʔϏε͚ͷਪનϩδοΫͷ։ൃɻ ग़લ͚ؗͷ.-ͷ։ൃͰɺʮॴɾ࣌ؒผͰͷधཁͷ༧ଌʯʮୡ࣌ؒͷ༧ଌʯͳ ͲɺΦϯϥΠϯͷσʔλ&5-ਪ͕ඞཁͳ.-γεςϜͷ։ൃʹྗ .-4PMνʔϜ -*/&ެࣜΞΧϯτͷϝοηʔδ৴࠷దԽɺ֤छαʔϏε͚ͷਪનͳͲΛ࣮ࢪ %41.-νʔϜ ࠂ৴ʹ༻͍ΔಛྔΤϯδχΞϦϯάɺ֎෦ഔମ͚৴γεςϜʢ-*/&ࠂ
ωοτϫʔΫʣ͚ͷ.-࠷దԽΛ࣮ࢪɻࠂΫϦΤΠςΟϒͷ৹ࠪΛߦ͏.-ج൫ͷ ։ൃͳͲʹணख .-1SJWBDZνʔϜ ϓϥΠόγʔۀҬͷߴ͍ઐੑΛ͓࣋ͬͯΓɺ'FEFSBUFE-FBSOJOHͱݺΕΔٕज़Λ αʔϏεಋೖ͢ΔϓϩδΣΫτʹࢀըɻݚڀʹྗ͓ͯ͠ΓɺτοϓΧϯϑΝϨϯε ʹଟจ͕࠾͞Ε͍ͯΔ .-%FWνʔϜ େنσʔλΛѻ͏ͨΊͷɺಠࣗ.-Ϟσϧ܈ͷ࣮උɺαʔϏεԣஅಛྔΛ׆༻ ͚ͨࣾ͠ͷ.-"1*։ൃɺ.-0QT͚ͷ౷ܭྔऩूγεςϜͷઃܭɾ։ൃͳͲΛ࣮ ࢪɻ'FEFSBUFE-FBSOJOHͷٕज़։ൃਐΊ͍ͯΔ .-*OGSBνʔϜ ػցֶशΤϯδχΞͷͨΊͷɺLT "JSGMPX $*$%ڥͳͲͷج൫උɺ͓Αͼ"1*ɾ ࢹγεςϜͳͲͷ։ൃӡ༻Λߦ͍ɺ৴པੑͷߴ͍αʔϏεΛఏڙɻۙͰɺػցֶ श༻్ͷΦϯϥΠϯಛྔετΞɺ.-͚ͷ%BUBϦωʔδγεςϜͳͲ։ൃ .-4PMνʔϜ αʔϏεԣஅͷಛྔͷඋɾӡ༻͓ΑͼɺͦͷσʔλΛར༻ͨ͠Ϣʔβଐੑͷਪఆͳ ͲΛ࣮ࢪ ɿ.-ΤϯδχΞ .-%41MBOOJOH5FBNͱʁ
.-%41MBOOJOH 5FBN
.-%41MBOOJOH5FBN R&R .-%4ͷྗͰ-*/&αʔϏεՁ্ʹ͚ͨ1SPKFDUͷਪਐΛߦ͏ ϑΣʔζʹΑͬͯSPMF͕ҟͳΔ͜ͱ͕ಛ 1SPEVDU.BOBHFNFOU • .-%4ؔ࿈ͷԣஅతͳ1SPEVDUͷϩʔυϚοϓઃܭɺΰʔϧڞ༗ͳͲ 1SPHSBN.BOBHFNFOU .-
• αʔϏεଆʹ.- 1SPEVDUΛ׆༻ͨ͠Ձ্ࢪࡦΛఏҊ͠ɺಋೖʹ͚ͨλεΫઃܭͱਐཧɺಋೖޙͷӡ༻ཧ • .-ൃ1SPEVDUͷ։ൃཧɺޙͷӡ༻ཧ 1SPHSBN.BOBHFNFOU %4 • ੳґཔʹج͖ͮαʔϏεଆͷཁΛώΞϦϯά͠%BUB4DJFOUJTUͷλεΫઃܭͱਐཧ • %BUB4DJFOUJTUͱڞʹαʔϏεੳΛߦ͍ͭͭɺࣄۀଆʹํੑ৽نࢪࡦఏҊͷਪਐ Members W/ ML product ɾ$34 ɾ4NBSU$IBOOFM ɾ"VUPSFDP ɾ-JCSB ɾ#BUDI"1* ɾ*OGSB ɾ4IPQ ɾ%FNBFDBO ɾ1FSTPOB ɾ'FBUVSF7FDUPS ɾΪϑτ ɾ0" ɾ3% ※他にも担当している案件は多数
8FBSFIJSJOH .-%41MBOOJOH5FBN https://linecorp.com/ja/career/position/3704 https://linecorp.com/ja/career/position/3458
.-%41MBOOJOH5FBN R&R .-%4ͷྗͰ-*/&αʔϏεՁ্ʹ͚ͨ1SPKFDUͷਪਐΛߦ͏ ϑΣʔζʹΑͬͯSPMF͕ҟͳΔ͜ͱ͕ಛ 1SPEVDU.BOBHFNFOU • .-%4ؔ࿈ͷԣஅతͳ1SPEVDUͷϩʔυϚοϓઃܭɺΰʔϧڞ༗ͳͲ 1SPHSBN.BOBHFNFOU .-
• αʔϏεଆʹ.- 1SPEVDUΛ׆༻ͨ͠Ձ্ࢪࡦΛఏҊ͠ɺಋೖʹ͚ͨλεΫઃܭͱਐཧɺಋೖޙͷӡ༻ཧ • .-ൃ1SPEVDUͷ։ൃཧɺޙͷӡ༻ཧ 1SPHSBN.BOBHFNFOU %4 • ੳґཔʹج͖ͮαʔϏεଆͷཁΛώΞϦϯά͠%BUB4DJFOUJTUͷλεΫઃܭͱਐཧ • %BUB4DJFOUJTUͱڞʹαʔϏεੳΛߦ͍ͭͭɺࣄۀଆʹํੑ৽نࢪࡦఏҊͷਪਐ Members W/ ML product ɾ$34 ɾ4NBSU$IBOOFM ɾ"VUPSFDP ɾ-JCSB ɾ#BUDI"1* ɾ*OGSB ɾ4IPQ ɾ%FNBFDBO ɾ1FSTPOB ɾ'FBUVSF7FDUPS ɾΪϑτ ɾ0" ɾ3% ※他にも担当している案件は多数 4DPQFPG5IJT1SFTFOUBUJPO
.-1.ͷ͓ࣄ
ࢀߟ -*/&ͷ.- 1. ʹ͍ͭͯ :PV5VCFͰެ։͞Ε͍ͯ·͢ ʮ5FDI7FSTFʯͰݕࡧ͍ͯͨͩ͘͠ͱɺ͝ཡ͍ͨͩ͘͜ͱ͕Ͱ͖·͢
.-1.ͷى͜Γ λεΫͷෳࡶੑ • ෳͷϓϩμΫτΛಉ࣌ฒߦͰ։ൃɾվળɾ ϝϯςφϯε ৫ͷෳࡶੑ • σʔλ࿈ܞઌͷ։ൃऀͱͷΓͱΓ • ๏ؔ࿈ͷΓͱΓ
• ηΩϡϦςΟؔ࿈ͷΓͱΓ • σʔλϚωδϝϯτؔ࿈ͷΓͱΓ γεςϜͷෳࡶੑ • σʔλ࿈ܞͷଟ༷Խ • ෳγεςϜؒ࿈ܞ • .-ج൫ʢ൚༻Խɾڞ௨Խʣ ϓϩμΫτͷෳࡶੑ • ϢʔβʹՁ͕ఏڙͰ͖͍ͯΔͷ͔ʁ .-FOHJOFFS .-JOGSBFOHJOFFS 1SPEVDU" QMBOOFS 1SPEVDU# QMBOOFS 1SPEVDU$ QMBOOFS 1SPEVDU% QMBOOFS 1SPEVDU& QMBOOFS 1SPEVDU" EFWFMPQFS 1SPEVDU# EFWFMPQFS -FHBM UFBN 4FDVSJUZ UFBN %BUB NBOBHFNFOU UFBN
.-1.ͷى͜Γ λεΫͷෳࡶੑ • ෳͷϓϩμΫτΛಉ࣌ฒߦͰ։ൃɾվળɾ ϝϯςφϯε ৫ͷෳࡶੑ • σʔλ࿈ܞઌͷ։ൃऀͱͷΓͱΓ • ๏ؔ࿈ͷΓͱΓ
• ηΩϡϦςΟؔ࿈ͷΓͱΓ • σʔλϚωδϝϯτؔ࿈ͷΓͱΓ γεςϜͷෳࡶੑ • σʔλ࿈ܞͷଟ༷Խ • ෳγεςϜؒ࿈ܞ • .-ج൫ʢ൚༻Խɾڞ௨Խʣ ϓϩμΫτͷෳࡶੑ • ϢʔβʹՁ͕ఏڙͰ͖͍ͯΔͷ͔ʁ .-FOHJOFFS .-JOGSBFOHJOFFS 1SPEVDU" QMBOOFS 1SPEVDU# QMBOOFS 1SPEVDU$ QMBOOFS 1SPEVDU% QMBOOFS 1SPEVDU& QMBOOFS 1SPEVDU" EFWFMPQFS 1SPEVDU# EFWFMPQFS -FHBM UFBN 4FDVSJUZ UFBN %BUB NBOBHFNFOU UFBN ΤϯδχΞͷෛ୲૿ λεΫͷภΓ Ή33
.-1.ͷى͜Γ λεΫͷෳࡶੑ • ෳͷϓϩμΫτΛಉ࣌ฒߦͰ։ൃɾվળɾ ϝϯςφϯε ৫ͷෳࡶੑ • σʔλ࿈ܞઌͷ։ൃऀͱͷΓͱΓ • ๏ؔ࿈ͷΓͱΓ
• ηΩϡϦςΟؔ࿈ͷΓͱΓ • σʔλϚωδϝϯτؔ࿈ͷΓͱΓ γεςϜͷෳࡶੑ • σʔλ࿈ܞͷଟ༷Խ • ෳγεςϜؒ࿈ܞ • .-ج൫ʢ൚༻Խɾڞ௨Խʣ ϓϩμΫτͷෳࡶੑ • ϢʔβʹՁ͕ఏڙͰ͖͍ͯΔͷ͔ʁ .-FOHJOFFS .-JOGSBFOHJOFFS 1SPEVDU" QMBOOFS 1SPEVDU# QMBOOFS 1SPEVDU$ QMBOOFS 1SPEVDU% QMBOOFS 1SPEVDU& QMBOOFS 1SPEVDU" EFWFMPQFS 1SPEVDU# EFWFMPQFS -FHBM UFBN 4FDVSJUZ UFBN %BUB NBOBHFNFOU UFBN ΤϯδχΞͷෛ୲૿ λεΫͷภΓ Ή33 ʮͨΒ͍ʯ͕ճ·ΘͬͨΒ ৽ϙδγϣϯͷ߹ਤ IUUQTCMPHTIPKJNJZBUBDPNFOUSZ
.-1.ʹٻΊΒΕΔεΩϧηοτ λεΫɾ৫ͷෳࡶੑʹରԠ͢Δ • ϓϩδΣΫτϚωδϝϯτɺͪΐͬͱΘ͔Δ • γεςϜ։ൃɺͪΐͬͱΘ͔Δ • .-։ൃɺͪΐͬͱΘ͔Δ γεςϜͷෳࡶੑʹରԠ͢Δ •
γεςϜ։ൃɺͪΐͬͱΘ͔Δ • .-։ൃɺͪΐͬͱΘ͔Δ ϓϩμΫτͷෳࡶੑʹରԠ͢Δ • ϓϩμΫτϚωδϝϯτɺͪΐͬͱΘ͔Δ ྲྀಈతͳঢ়گͱෆ࣮֬ੑʹରԠ͢Δ • ݱঢ়ೝࣝೳྗͱߦಈྗ͕͋Δ • తୡͷͨΊʹɺඞཁͳλεΫΛࣗΒݟ͚ͭͯɺղܾʹಋ͘ʢ՝ൃݟྗɾ՝ղܾྗʣ • ϓϩδΣΫτϝϯόʔʹΑͬͯɺ33ʹάϥσʔγϣϯ͕Ͱ͖ΔͨΊɺۀؒͷܺؒΛ ຒΊΔΑ͏ͳಈ͖͕Ͱ͖Δ
։ൃαΠΫϧͱ1.ͷؔΘΓํ 1SPEVDUEJTDPWFSZ • ϓϩμΫτ՝ɾඪͷώΞϦϯάɾڞ༗ • .-׆༻ͷ࣮ݱՄೳੑͱՁʹ͍ͭͯݕ౼ %BUBJOHFTUVOEFSTUBOEJOH • ඞཁͳσʔλͷ࿈ܞਪਐ &YQFSJNFOU%FWFMPQNFOU
• ࣮ݱՄೳੑͱՁʹ͍ͭͯ֬ೝɾ࠶ఆٛ "#ςετ • اըɾઃܭɾ࣮ࢪɾධՁ .POJUPSJOH • ධՁɾϑΟʔυόοΫ
։ൃαΠΫϧͱ1.ͷؔΘΓํ 1SPEVDUEJTDPWFSZ • ϓϩμΫτ՝ɾඪͷώΞϦϯάɾڞ༗ • .-׆༻ͷ࣮ݱՄೳੑͱՁʹ͍ͭͯݕ౼ %BUBJOHFTUVOEFSTUBOEJOH • ඞཁͳσʔλͷ࿈ܞਪਐ &YQFSJNFOU%FWFMPQNFOU
• ࣮ݱՄೳੑͱՁʹ͍ͭͯ֬ೝɾ࠶ఆٛ "#ςετ • اըɾઃܭɾ࣮ࢪɾධՁ .POJUPSJOH • ධՁɾϑΟʔυόοΫ • ֤ϓϩηεΛԁʹϚωδϝϯτ͠ɺϓϩμΫτϦϦʔεʹ͍࣋ͬͯ͘ • Ձͷ͋ΔϓϩμΫτΛఏڙ͢Δ • ୭Ͱɺޮత͔ͭ҆ఆతʹ։ൃɾӡ༻Ͱ͖Δঢ়ଶʹ͢Δ
࣮ࡍͷࣄྫ
Sticker / Theme 1SPEVDUEJTDPWFSZ • ΩʔϘʔυೖྗʹ͓͚ΔϢʔβ՝ͷղফ • Ծઆݕূํ๏Λݕ౼ %BUBJOHFTUVOEFSTUBOEJOH •
՝ղܾɾԾઆݕূʹඞཁͳσʔλ֬ೝ • σʔλ׆༻ʹؔ͢Δ՝ղܾ &YQFSJNFOU%FWFMPQNFOU • ΦϑϥΠϯݕূɾ࣮ͷؾ͖͔ͮΒԾઆΛڧԽ • γεςϜؒͷσʔλ࿈ܞɾग़ྗ "#テスト • Ծઆݕূ .POJUPSJOH • Ϣʔβͷ՝͕ղܾͰ͖͍ͯΔͷ͔Λݟଓ͚Δ
࠷ޙʹ
ࠓͷൃද༰ ɾ-*/&ͷ%4.-1MBOOJOH5FBNʹ͓͚Δ.-։ൃʹର͢Δ.-1.ͷؔΘΓํΛհ ࠷ޙʹ ɾ.-։ൃʹؔΘΔօ༷ͷࢀߟʹͳΕ͍Ͱ͢ ɾ-*/&ͱ͍͏αʔϏεΛʮ͞Βʹʯ͍ͯ͘͠ΕΔͱخ͍͠Ͱ͢ ࠷ޙʹ
THANK YOU
Persona(ଐੑਪఆ) 1SPEVDUEJTDPWFSZ • どんな属性を推定したいかを広告チームなどと相談 • 属性の定義をすり合わせ • (開発後)プロダクトの広報活動 %BUBJOHFTUVOEFSTUBOEJOH •
インサイトリサーチチームとアンケート設計 • データ管理、権限管理についてすり合わせ &YQFSJNFOU%FWFMPQNFOU • 学習データの精度、予測分布の確認 • 結果によっては属性の定義⾒直し • 書き出し先の検討、各種システムとのつなぎ合わせ "#テスト • ࠂจ຺ͰͷΦϑϥΠϯɺΦϯϥΠϯςετ • ݁Ռͷղऍ .POJUPSJOH • ֶशਫ਼ɺ༧ଌͷϞχλϦϯά • ༧ظ͠ͳ͍Τϥʔͷ௨ͱͦͷ࣌ͷࣗಈରԠ
Z-features(෦ॺԣஅͷಛྔ) 1SPEVDUEJTDPWFSZ • ͲΜͳಛྔΛઃܭͰ͖Δ͔ %BUBJOHFTUVOEFSTUBOEJOH • ඞཁͳσʔλͷݖݶਃɺηΩϡϦςΟϨϏϡʔ • ઃܭͷυΩϡϝϯτԽ &YQFSJNFOU%FWFMPQNFOU
• &5-ͷ࡞ .-ΤϯδχΞͷࣄ .POJUPSJOH • ༧ظ͠ͳ͍σʔλఆٛมߋͷݕ