Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
事業横断組織でのMLシステム開発・運用と基盤設計
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Livesense Inc.
PRO
June 17, 2019
Technology
0
4.1k
事業横断組織でのMLシステム開発・運用と基盤設計
MACHINE LEARNING Meetup KANSAI #5
2019/6/17
Livesense Inc.
PRO
June 17, 2019
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
27新卒_総合職採用_会社説明資料
livesense
PRO
0
2.6k
27新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
0
6.6k
株式会社リブセンス・転職会議 採用候補者様向け資料
livesense
PRO
0
190
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
1.6k
データ基盤の負債解消のためのリプレイス
livesense
PRO
0
550
26新卒_総合職採用_会社説明資料
livesense
PRO
0
13k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
2
52k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
13k
中途セールス職_会社説明資料
livesense
PRO
0
290
Other Decks in Technology
See All in Technology
Claude Code for NOT Programming
kawaguti
PRO
1
110
コンテナセキュリティの最新事情 ~ 2026年版 ~
kyohmizu
7
2.4k
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
370
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
620
私たち準委任PdEは2つのプロダクトに挑戦する ~ソフトウェア、開発支援という”二重”のプロダクトエンジニアリングの実践~ / 20260212 Naoki Takahashi
shift_evolve
PRO
2
210
猫でもわかるKiro CLI(セキュリティ編)
kentapapa
0
130
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
110
22nd ACRi Webinar - ChipTip Technology Eric-san's slide
nao_sumikawa
0
100
AWS Network Firewall Proxyを触ってみた
nagisa53
1
250
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
520
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
230
Featured
See All Featured
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
470
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.4k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Everyday Curiosity
cassininazir
0
130
Mind Mapping
helmedeiros
PRO
0
90
Evolving SEO for Evolving Search Engines
ryanjones
0
130
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
The SEO identity crisis: Don't let AI make you average
varn
0
330
Transcript
ࣄۀԣஅ৫Ͱͷ MLγεςϜ։ൃɾӡ༻ͱج൫ઃܭ Shotaro Tanaka / @yubessy / Ϧϒηϯε (ژΦϑΟε) MACHINE
LEARNING Meetup KANSAI #5
͢͜ͱ • ෳͷWebαʔϏεΛӡӦ͍ͯ͠Δاۀ • MLγεςϜͷ։ൃɾӡ༻νʔϜԣஅ৫ͱͯ͠αʔϏε͔Βಠཱ • ֤αʔϏεʹϨίϝϯυޮՌ༧ଌϞσϧͳͲෳͷMLγεςϜΛఏڙ ͱ͍͏ڥͰɺMLγεςϜΛ։ൃɾӡ༻͢ΔͨΊʹͲΜͳΛ͍ͯ͠Δ͔ ͋Δ͍ɺͦͷͨΊͷMLج൫ΛͲ͏ઃܭ͍ͯ͠Δ͔
αʔϏεɾ৫ɾνʔϜ
None
৫ߏ • ࣄۀ෦ • ΞϧόΠτࣄۀ෦ (ϚοϋόΠτ) • ΩϟϦΞࣄۀ෦ (స৬ձٞ, స৬υϥϑτ,
...) • ෆಈ࢈Ϣχοτ (Door ି, IESHIL) • ... • ԣஅ৫ • ςΫϊϩδΧϧϚʔέςΟϯά෦ • σʔλϓϥοτϑΥʔϜάϧʔϓ ← MLؔ࿈ͷνʔϜ͜͜ʹॴଐ • σʔλϚʔέςΟϯάάϧʔϓ • ΠϯϑϥετϥΫνϟάϧʔϓ
MLνʔϜɾMLج൫νʔϜ ࣾһ • MLΤϯδχΞ: 2໊ • MLج൫ΤϯδχΞ: 2໊ • શʹۀ͍ͯ͠ΔΘ͚Ͱͳ͘ɺॏͳΔ෦͋Δ
ֶੜΞϧόΠτ • ژΦϑΟε: 4໊ • ౦ژΦϑΟε: 1໊ • ML/Web/ΠϯϑϥͳͲͷεΩϧΛ׆͔ͯ͠։ൃΛิॿ
ओͳMLγεςϜ
ٻਓϨίϝϯυΤϯδϯ • ϚοϋόΠτɾస৬φϏͳͲͷϢʔβʹٻਓΛਪન • ϝʔϧɾWebαΠτɾωΠςΟϒΞϓϦͳͲ༷ʑͳॴͰಋೖ
ٻਓϨίϝϯυΤϯδϯͷ෦ • ධՁɾίϯςϯπΛͱʹ MF, FM ͳͲͷΞϧΰϦζϜΛద༻͠είΞΛࢉग़ • user-item item-item
ͷϦετΛόονॲཧͰੜ֤͠αʔϏεʹఏڙ
Ԡืɾ࠾༻ͷޮՌਪఆɾ༧ଌϞσϧ • ϚοϋόΠτɾస৬φϏͳͲͷٻਓͷCVRԠื୯ՁΛࢉग़ • ݕࡧ݁ՌͷॱҐ੍ޚࠂग़ߘͷ࠷దԽʹ׆༻
Ԡืɾ࠾༻ͷޮՌਪఆɾ༧ଌϞσϧͷ෦ • ϩάΛ༻͍ͯϕΠζਪఆɾϩδεςΟοΫճؼͰ༧ଌɾਪఆ • σΟϨΫλʔ͚ʹ؆қతͳϏϡʔϫΛWebΞϓϦͱͯ͠։ൃ
A/BςετɾόϯσΟοτπʔϧ • A/Bςετͷύλʔϯ৴ൺΛόϯσΟοτΞϧΰϦζϜͰࣗಈௐ • WebαΠτɾωΠςΟϒΞϓϦͷ࠷దԽΛޮԽ
A/BςετɾόϯσΟοτπʔϧͷ෦ • ཧը໘͔ΒύλʔϯΛొ͠ɺWeb APIͰϥϯμϜʹ৴ • CVϩάΛੳج൫Ͱूܭ͠ɺύλʔϯ৴ൺΛࣗಈߋ৽
MLج൫͕ͳ͔ͬͨ࣌
࠷ॳظͷߏ • 2014ࠒʹ࠷ॳͷγεςϜ (ϨίϝϯυΤϯδϯ) Λ։ൃ • σʔλऔಘ͔Βσʔλอଘ·ͰΛҰؾ௨؏Ͱߦ͏δϣϒ
ෳࡶԽ͢Δ࣮ • ධՁσʔλͷΈΛ͏ΞϧΰϦζϜΛՃ • ϑΟϧλϦϯάϦετͷϚʔδΛߦͬͯϨίϝϯυϦετΛੜ
ࣅͨΑ͏ͳγεςϜͷ૿Ճ • ಉαʔϏεͰA/BςετͷͨΊϨϙδτϦΛෳͯ͠ΞϧΰϦζϜ͚ͩมߋ • ผαʔϏεͷԣల։ͷࡍʹΞϧΰϦζϜΛίϐʔͯ͠ར༻
ଟछଟ༷ͳ࣮ߦڥ • ֤γεςϜ͕αʔϏεͷڥʹ૬Γ͠ɺσϓϩΠϑϩʔҧ͏ • ΦϯϓϨͷϦιʔεʹݶΓ͕͋ΓɺVM͝ͱʹεϖοΫ͕ඍົʹҧ͏
खʹෛ͑ͳ͘ͳ͖ͬͯͨ
͜ͷ··Ͱ͍ͣΕ։ൃӡ༻ഁ͢Δ → ͦ͏ͳΔલʹMLج൫Λߏங͢Δ͜ͱʹ MLج൫ Livesense Brain ※ͱΓ͋͑ͣ࠷ॳʹ໊લ͚ܾͩΊͨ
MLج൫ԽͷͶΒ͍ ։ൃ໘ͷݟ͠ • γεςϜͷϞδϡʔϧؒͷີ݁߹Λͳ͘͢ • γεςϜؒͰڞ௨ԽͰ͖Δ෦ڞ௨Խ ӡ༻໘ͷݟ͠ • νʔϜ͕ࣗલӡ༻Ͱ͖ΔΠϯϑϥू •
δϣϒཧσϓϩΠϑϩʔΛڞ௨Խ
։ൃ໘ͷݟ͠
։ൃ্ͷ MLͷίΞ෦ͱͦΕҎ֎͕ີ݁߹ • MLΤϯδχΞɾMLج൫ΤϯδχΞͷ୲Λ͠ʹ͍͘ • ༻్ʹԠͯ͡ݴޠϥΠϒϥϦΛ͍͚ΒΕͳ͍ ֤γεςϜͷڞ௨ॲཧΛίϐϖར༻ • ڠௐϑΟϧλϦϯάͳͲͷΞϧΰϦζϜ࣮ •
લॲཧDBೖग़ྗ༻ͷΫϥε → γεςϜΛػೳ͝ͱʹׂ͠࠶ߏͰ͖ͳ͍͔ʁ
ίϯϙʔωϯτͷׂ ֤εςοϓΛ୯ػೳίϯϙʔωϯτʹΓग़͠ • ֤ίϯϙʔωϯτ CLI Ͱ୯ಠ࣮ߦͰ͖Δ • ίϯϙʔωϯτؒͷೖग़ྗͯ͢ϑΝΠϧΛհ͢Δ ྫ: •
I/Oίϯϙʔωϯτ: SQLϑΝΠϧΛೖྗ → σʔλΛCSVͱͯ͠ग़ྗ • લॲཧίϯϙʔωϯτ: ςΩετσʔλΛೖྗ → BoWϕΫτϧΛग़ྗ • Ϩίϝϯυίϯϙʔωϯτ: ධՁσʔλΛೖྗ → ਪનείΞΛग़ྗ
ίϯϙʔωϯτͷίϯςφԽ • ֤ίϯϙʔωϯτΛ୯Ұͷ Docker Πϝʔδʹ͢Δ • γεςϜ͝ͱͷࠩ΄΅ઃఆϑΝΠϧɾSQL͚ͩͰදݱ • ୯७ͳόονॲཧͳΒ docker
run ͷஞ࣮࣍ߦ͚ͩͰॻ͚Δ • ࣮ࡍʹ͜ΕͰຊ൪Քಇ͍ͯ͠ΔγεςϜ͋Δ # load dataset docker run -v $(pwd):/workdir sqlkit select ratings.sql /workdir/ratings.csv docker run -v $(pwd):/workdir sqlkit select content.sql /workdir/content.csv # preprocess docker run -v $(pwd):/workdir nlpkit vectorize /workdir/content.csv /workdir/features.csv # run recommender docker run -v $(pwd):/workdir recommender predict config.yaml /workdir
None
Pros • ΞϧΰϦζϜ࣮ͳͲΛෳγεςϜؒͰ࠶ར༻Ͱ͖Δ • ίϯϙʔωϯτ͝ͱʹݸผʹ։ൃɾվળ͕Ͱ͖Δ • ผͷݴޠϥΠϒϥϦΛ͏͜ͱ༰қ • ৽نϝϯόʔΞϧόΠτͷࢀೖোน͕͘ͳͬͨ •
͋Δίϯϙʔωϯτʹ͍ͭͯΩϟονΞοϓ͢Εࣄ͕Ͱ͖Δ Cons • MLΤϯδχΞؚΊશһʹίϯςφͷ͕ࣝ͋Δఔඞཁ
ӡ༻໘ͷݟ͠
ӡ༻্ͷ Πϯϑϥͷมߋͷࣗ༝͕͍ • MLγεςϜ͕֤αʔϏεͷΠϯϑϥʹ૬Γ • धཁʹԠͨ͡Ϧιʔεมߋ͕ॊೈʹͰ͖ͳ͍ ͦΕͧΕͷγεςϜͷڥ͕શ͘ผ • 10Ҏ্ͷδϣϒ͕֤γεςϜઐ༻ͷVMͰ cron
࣮ߦ • δϣϒཧπʔϧσϓϩΠϑϩʔόϥόϥ → νʔϜࣗલͷΠϯϑϥͰγεςϜΛҰݩཧͰ͖ͳ͍͔ʁ
Google Kubernetes Engine (GKE) ͷ࠾༻ νʔϜࣗલͷίϯϐϡʔςΟϯάج൫ΛखʹೖΕΔ • ߴෛՙͳMLॲཧͷ࣮ߦதΦʔτεέʔϧͰϦιʔεΛ૿ڧ • γεςϜͷߏΛ༰қʹՃɾมߋͰ͖Δ
• ྫ: ༧ଌϞσϧͷ؆қϏϡʔϫΛ Deployment ͱཱͯͯ͠Δ ෳγεςϜΛ౷Ұ͞ΕͨڥͰҰݩཧͰ͖Δ • WebΞϓϦόονॲཧ୯ҰΫϥελʹಉډ • δϣϒཧσϓϩΠ k8s ͷΤίγεςϜ্Ͱ࣮ݱ
ิ: গਓνʔϜͰ Kubernetes ? γεςϜͷܗଶ͕Ұ༷ɾ୯७ͳΒଞʹྑ͍બࢶ͕͋Δ • όονॲཧ͚ͩ → GCE, Fargate,
... • WebΞϓϦ͚ͩ → GAE, Beanstalk, ... ͔͠͠ɺࠓճ༷ʑͳγεςϜΛѻ͏ඞཁ͕͋ͬͨ • ҠߦରͷطଘγεςϜʹόονॲཧWebΞϓϦؚ·ΕΔ • ίϯςφԽ͞ΕͨෳͷίϯϙʔωϯτΛ࿈ܞ͍ͤͨ͞ → ͜ΕΒΛ౷Ұతʹཧ͢Δͷʹ Kubernetes ͕ద͍ͯͨ͠
ϫʔΫϑϩʔΤϯδϯͷಋೖ • δϣϒཧͦͷͷ k8s ͰҰݩԽͰ͖ͨ • ίϯϙʔωϯτΛ࿈ܞͤͯ͞ϫʔΫϑϩʔԽ͍ͨ͠ → Argo Workflow
Λಋೖ • k8s ͰίϯςφΛྻɾฒྻɾDAG࣮ߦ͢ΔϫʔΫϑϩʔΤϯδϯ • ϦτϥΠɾΤϥʔॲཧͳͲ؆୯ʹ࣮ݱ • ϫʔΫϑϩʔ࣮ߦΛ Web UI ͰϞχλϦϯάͰ͖Δ લճLTͰհ: Argo Workflow ʹΑΔMLδϣϒཧ - Speaker Deck
σϓϩΠϑϩʔͷࣗಈԽ • σϓϩΠͦͷͷ k8s manifest Λ apply ͢Δ͚ͩ • ߋʹखؒΛলͨ͘ΊσϓϩΠΛࣗಈԽ͍ͨ͠
→ Cloud Build Ͱ GitOps Λ࣮ݱ • Manifest ϨϙδτϦͷϓϧϦΫϚʔδΛτϦΨʔͱ͢Δ • Cloud Build Ͱ kustomize build ~ kubectl apply ※ Argo CD ݕ౼͕ͨ͠ɺࠓͷنͳΒ Cloud Build Ͱेͱஅ
None
Pros • νʔϜͰͷӡ༻ͷॊೈੑɾࣗ༝্͕ • ඞཁʹԠͯ͡ϦιʔεΛ૿ڧ • PoC ࣮ΛαʔϏεӨڹΛݶఆͯ͠ࢼݧӡ༻ • γεςϜ͕૿͑ͯཧίετΛ͍͑͢
Cons • ಉ͡ΠϯϑϥʹෳγεςϜ͕ಉډ → ΧεέʔυোͷϦεΫ • δϣϒͷႈੑͳͲ k8s ಛ༗ͷੑ࣭ʹཹҙ͢Δඞཁ
MLج൫લޙͷશମൺֱ
Before
After
Before • ਨߏ = ݽཱͨ͠γεςϜΛݸผʹ։ൃɾӡ༻ • γεςϜͷʹൺྫͯ͠ɾਓ͕ඞཁʹͳΓ͕ͪ After • ਫฏߏ
= ػೳίϯϙʔωϯτΛ࠶ར༻͠ɺΠϯϑϥϨΠϠΛڞ௨Խ • γεςϜͷ͕૿͑ͯཧׂ୲͕͍͢͠
·ͱΊ
·ͱΊ • গਓͷԣஅνʔϜͰෳͷMLγεςϜΛ։ൃɾӡ༻ • MLج൫Ҏલ֤γεςϜ͕ݽཱͨ͠ঢ়ଶͰଟ͘ͷΛ๊͍͑ͯͨ • MLج൫ߏஙΛ௨ͯ͡։ൃɾӡ༻Λશମతʹݟ͢͜ͱʹ • ίϯϙʔωϯτׂͱࣗલΠϯϑϥͷҰݩԽΛߦͬͨ •
ਨߏ → ਫฏߏ ͷసͰཧׂ୲͕͘͢͠ͳͬͨ