Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ基盤の負債解消のためのリプレイス
Search
Livesense Inc.
PRO
November 28, 2024
Technology
0
550
データ基盤の負債解消のためのリプレイス
https://livesense.connpass.com/event/333967/
Livesense Inc.
PRO
November 28, 2024
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
27新卒_総合職採用_会社説明資料
livesense
PRO
0
2.5k
27新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
0
6.4k
株式会社リブセンス・転職会議 採用候補者様向け資料
livesense
PRO
0
170
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
1.6k
26新卒_総合職採用_会社説明資料
livesense
PRO
0
12k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
2
51k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
13k
中途セールス職_会社説明資料
livesense
PRO
0
290
EM候補者向け転職会議説明資料
livesense
PRO
0
150
Other Decks in Technology
See All in Technology
配列に見る bash と zsh の違い
kazzpapa3
1
130
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
3
1.2k
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
630
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.4k
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
190
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
340
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
120
20260204_Midosuji_Tech
takuyay0ne
1
140
データ民主化のための LLM 活用状況と課題紹介(IVRy の場合)
wxyzzz
2
700
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
180
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
530
Digitization部 紹介資料
sansan33
PRO
1
6.8k
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
Leo the Paperboy
mayatellez
4
1.4k
GitHub's CSS Performance
jonrohan
1032
470k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
Building the Perfect Custom Keyboard
takai
2
680
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
180
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
Fireside Chat
paigeccino
41
3.8k
Transcript
データ基盤の負債解消のためのリプレイス 2024.11.28 技術部データプラットフォームグループ 富⼠⾕康
• 株式会社リブセンス 技術部データプラットフォームグループ グループリーダー • 2018年⼊社 • 以来、推薦システムの改善、 データ基盤の開発、 マネジメントなどに取り組む
富⼠⾕ 康 (Fujitani Ko)
• ⼈材系を中⼼に複数のプロダクト • プロダクトは各事業部、データ基盤は横断部署で運⽤ リブセンスのプロダクトとデータ基盤
データ基盤、⼤きく分けて2つ プロダクト Redshift プロダクト 外部データ Livesense Analytics: データ分析(収集、蓄積) Livesense Brain:
データ活用(推薦、機械学習) 22年〜大規模に刷新(中)
22年末のLivesense Analytics ※ざっくり Beanstalk ソース Search Console Livesense Brain プロダクト
利⽤先 API Gateway SQS lambda Firehose EMR EC2 EventBridge Scheduler バックエンド オンプレ native app DB
• 同じようなことやるのに技術いろいろ 課題 処理 ⾔語 Beanstalk lambda EMR ワークフロー EventBridge
Scheduler EC2 構成管理 Terraform CDK
• 同じ部署で別のクラウド ◦ 理由あったが⼤変 課題 Livesense Analytics Livesense Brain
• 開発体験が良くない ◦ ⼤きな変更‧モダン化も⼤変 ◦ リリース⼿順も様々 ◦ EOL対応も後⼿ 今までのデータ基盤
• データ‧事業の課題に集中できる環境 理想
• Google Analytics 4への移⾏ • BigQueryとSQLでの加⼯ • 技術スタック統⼀ ◦ GKE/Cloud
Run/Argo Workflows/Python/FastAPI • 詳細は リブセンスの「10年物」のデータ基盤を作り変えている話 にも記載 リプレイスの主な取り組み
• There should be one-- and preferably only one --obvious
way to do it. ◦ 何かをするのに、1つ‒‒理想的には1つだけの‒‒明確な⽅法があるべきだ (参考) • リプレイスで標準的な⽅法を構築 余談: Zen of Python
25年初のLivesense Analytics ※予定 Livesense Brain プロダクト Cloud Run PubSub GKE
CloudBuild CloudDeploy Cronitor CloudMonitoring Search Console Terraform バックエンド native app DB ※検証中 ※検証中
• ⼤きな改善に取り組みやすくなりつつある • SaaSのBigQuery連携も選択肢に ◦ GA4, fastly, Search Console ◦
データ追加の負担減‧よりリッチな情報 • 解きたい課題に集中できつつある リプレイスの結果
• Redash ◦ 利⽤者多‧クエリ多 ◦ データマート層を⼗分に拡充できてない ▪ やや複雑なクエリ - 利⽤者に負担
▪ テーブル定義変更も容易でない • Redshift ◦ プロダクトはAWS。利点もあるが… ◦ BQ や Snowflakeのほうが機能充実 ◦ BQでデータソースからマートまで⼀貫したデータ⽣成したい まだ課題
展望: 少し未来 Livesense Analytics Livesense Brain プロダクト Cloud Run PubSub
Search Console GKE CloudBuild CloudDeploy Cronitor CloudMonitoring Terraform バックエンド native app DB
• アナリティクスエンジニアリングの強化(採⽤) • データを使った業務の改善 ◦ クエリ‧分析の質向上、脱スプレッドシート ◦ データソース改善 • BigQuery移⾏へ
◦ Redshiftのインスタンス変更(dc2->ra3)‧Redshift Spectrumやめる ◦ 各種準備‧実装 • 効果的な推薦‧検索‧機械学習モデルの実装 ◦ MLOps、使いやすいML/AI基盤 今後