Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Maths of Microscaling
Search
Liz Rice
November 08, 2016
Technology
2
220
The Maths of Microscaling
Using control theory to scale containers in real time, in response to demand
Liz Rice
November 08, 2016
Tweet
Share
More Decks by Liz Rice
See All by Liz Rice
Unleashing the kernel with eBPF
lizrice
0
170
eBPF's Abilities and Limitations: The Truth
lizrice
0
300
Simplifying multi-cloud and multi-cluster Kubernetes deployments with Cilium
lizrice
0
180
When is a Secure Connection not encrypted? And other stories
lizrice
1
79
Keeping it simple: Cilium Mesh - networking for multi-cloud Kubernetes and beyond
lizrice
1
610
How Many Proxies Do You Need
lizrice
1
140
eBPF for Security Observability
lizrice
0
1.3k
Beginner's Guide to eBPF Programming for Networking
lizrice
1
2.3k
Contributing to Open Source - what's in it for my business?
lizrice
0
52
Other Decks in Technology
See All in Technology
日経のデータベース事業とElasticsearch
hinatades
PRO
0
260
4th place solution Eedi - Mining Misconceptions in Mathematics
rist
0
150
E2Eテスト自動化入門
devops_vtj
1
110
2025/3/1 公共交通オープンデータデイ2025
morohoshi
0
100
AI Agent時代なのでAWSのLLMs.txtが欲しい!
watany
3
350
手を動かしてレベルアップしよう!
maruto
0
240
DevinでAI AWSエンジニア製造計画 序章 〜CDKを添えて〜/devin-load-to-aws-engineer
tomoki10
0
190
データエンジニアリング領域におけるDuckDBのユースケース
chanyou0311
9
2.5k
Introduction to OpenSearch Project - Search Engineering Tech Talk 2025 Winter
tkykenmt
2
170
事業を差別化する技術を生み出す技術
pyama86
2
480
ABWG2024採択者が語るエンジニアとしての自分自身の見つけ方〜発信して、つながって、世界を広げていく〜
maimyyym
1
200
20250304_赤煉瓦倉庫_DeepSeek_Deep_Dive
hiouchiy
2
120
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
41
2.5k
KATA
mclloyd
29
14k
GraphQLとの向き合い方2022年版
quramy
44
14k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Become a Pro
speakerdeck
PRO
26
5.2k
The Language of Interfaces
destraynor
156
24k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Docker and Python
trallard
44
3.3k
How STYLIGHT went responsive
nonsquared
99
5.4k
Facilitating Awesome Meetings
lara
53
6.3k
Transcript
The Maths of Microscaling Liz Rice @lizrice | @microscaling
What is Microscaling? Assumptions Some theory Some experiments
What is Microscaling?
Traffic spike
Too much work Spare capacity
container scaling work performance metrics
work performance metrics container scaling VM autoscaling
True for regular autoscaling too VMs take much longer to
scale
Orchestration Heterogenous services Cattle not pets
Performance targets
How many containers? Request processing time Rate of requests known?
predictable?
performance target actual performance error time t
performance target p time t actual performance x e(t) =
x(t) - p(t) e(t) → 0 error e
x(t) is proportional to n(t) n(t) = k x(t) error
e time t number of containers n
x(t) is proportional to n(t) nope! error e time t
number of containers n d(t) is proportional to e(t) d
Time delays It’s a dynamical system
Woah, the future! error e time t d(t) is proportional
to e(t + T) T d
None
Control theory!
PID controller
error e time t Proportional term d(t) = Kp e(t)
The further we are below target the more containers we need
error e time t Derivative term The faster we approach
target the fewer containers we need d(t) = Kp e(t) + Kd ė(t)
error e time t Integral term d(t) = Kp e(t)
+ Kd ė(t) + Ki e(t) Offset errors accumulated over time ∫
Which values for K? Discrete containers?
Simulator goo.gl/KAqT5y
It works! But it’s non-trivial to tune
Known behaviours Machine learning
Container parameters = metadata microbadger.com
github.com/microscaling @lizrice | @microscaling app.microscaling.com microbadger.com