• Brewing beer with Sugars • Reactions involving sugar • Maillard reactions • Vs. Caramelisation • Reaction and products • Some biochemistry • What is Candi sugar? • Making Inverted sugar • Making Candi sugar • Process • Recipes • Variations and Beer styles
Monosaccharide C6 H12 O6 aka. Dextrose, Blood sugar, Corn sugar Fructose 2-4% Monosaccharide C6 H12 O6 Isomer of Glucose. Found in fruit (wine) Sucrose* 2-5% Disaccharide: Glucose + Fructose Found in cane or beet. Table or cane sugar Maltose 50-70% Disaccharide: Glucose X 2 Found in malted grains Maltotriose 10-20% Polysaccharide: Glucose X 3 Fully/Partially fermentable Dextrins 10-25% All larger Polysaccharides Various complexities. Mostly Unfermentable Galactose 0% Monosaccharide C6 H12 O6 Found in diary, not beer Lactose 0% Disaccharide: Glucose + Galactose Found in milk. Unfermentable Carbohydrate: Carbon based molecule: CM (H2 O)N Polysaccharides are chains of monosaccharides with glycosidic bonds • Storage: Glycogen (animals), Starch (plants) • Structural: Chitin, Cellulose, Peptidoglycan *Non-reducing sugar: Missing free aldehyde (-CHO) or ketone (=O) group and cannot form open chains
• Increase the alcohol • Lighten the body • Interesting flavours and aromas • Priming How to Add sugar to beer? • Add to the boil: easy, no sanitation • After/During primary: • Stronger maltose fermentation • Less yeast stress • OG > 1.060 or sugar > 15% • Secondary: if flavour is subtle • Bottling: carbonation (and flavour)
Fructose (=Inverted sugar) through hydrolysis (needs water) • Faster with higher temperatures and lower pH • Also occurs enzymatically (Invertase) Maillard reactions • Non-enzymatic reaction between amino acids and reducing sugars • First described by Louse-Camille Maillard in 1912 • Creates 1000s of new compounds e.g. Melanoidin • Gives food and beer it’s colour and flavour: steak, cookies, biscuits, e.g. doppelbock Caramelisation • Pyrolytic process: breakdown and oxidation of reducing sugar then recreation of larger chemicals • Dehydration, Condensation, Isomerisation, Fragmentation, Polymerisation, Cyclisation • Overlaps with Maillard reactions • Flavours: caramel, toffee, chocolate, roasted, e.g. stout, wee heavy
Amine (NH2) and Carboxyl (COOH) group • Building blocks of proteins • 19 types in beer - Lysine and Theonine most common • Needed for healthy fermentation • Sugars • Fructose (Ketose) faster than Glucose (Aldose) • Sucrose must invert first • Faster reactions with: • Higher temperature • Higher pH • Higher concentration of ingredients • Less water, but needs some • Iron and Copper catalysts • Melanoidins (most important result) • Gives colour and toasty-sweet flavour to beer • Oxidises when hot, Anti-oxidising when cooler • Catalyst for aldehyde and higher alcohols formation • Reaction in turn lowers the pH Maillard reactions are poorly understood
beer, tends to be standardised (and boring!) • Used in most Belgian style ales • Recipe kept secret by Belgian producers • Adds aroma, flavour and thins the body • Darker versions add significant flavour, especially Quadrupels • Westvleteren 12 is mostly Pilsen malt and Candi sugar • Available in rocks or syrup • Usually light, amber and dark Common misconceptions • The same as Inverted sugar • Purely to add alcohol and thin the body • Tastes like table sugar, so it’s the same Process • Conversion, Maillard reactions and caramelisation • Fairly easy to make at home
300-400ml of water • Acid (e.g. Lactic/Citric) – not essential Process • Heat and dissolve fully first at < 100 ͦC (10 min) • Hold between 100 and 110 ͦC (10-40 min) • Stir, Brush off crystals on the side • 1-2 tablespoon of cold water when too hot • Leave if temperature stable at a smaller flame • Should not have any browning Rocks vs. Syrup • Cool by adding water – Leave to cool • Add more water for syrup • More viscous as it cools • Result is Glucose, Fructose, Sucrose • Makes 1kg of Inverted sugar Use • Store in fridge • Syrup will thicken • Keeps for 6 months • Syrup easier to add to boil – no scorching • Heat and cool again to sanitise
Mix some with Golden syrup • 300-400ml of water • Alkaline (e.g. ½-1 teaspoon pickling lime) • Amino Acids (1 tblspn DME/Yeast nutrient) Process • Invert sugars as before (10-40 minutes) • Raise to 130 ͦC • Add Amino acids and alkaline (pH around 12) • Keep at 125-145 ͦC for 10 min - 2 hours • Stir continuously, cool by adding water • Becomes darker with time Add caramelisation • Raise and hold at 150-170 ͦC • Happens fast! (5 min) with lots of browning • Stir continuously avoid scorching Danger! • Do not leave unattended • Splatters hot sugar • Tends to boil over –> reduce heat fast! • Keep cold water at hand • Use long sleeves and eye protection
care): - Pickling lime Ca(OH)2 , Lye NaOH - Baking soda NaHCO3 , Chalk CaCO3 - Amino acid: - DME, Yeast Nutrient, wort Time Lime Lime + Nutrient Baking Soda Malic Acid Acid + Nutrient Chalk Treacle+Nutrient+ Lime 5 Very sweet, no other flavor Sweet, but as much as Lime, tastes just like frosted flakes (melanoidins!) Less sweet, than Lime nutrient, otherwise tastes like sugar slightly tangy, otherwise tastes just like sugar Sweet but less so than acid, not as tangy either, slightly fruity Sweet, tastes like sugar Sweet, caramelly, some hints of frosted flakes 40 Sweet, slightly minerally and slightly chalky Toffee and dark fruits, hints of burnt sugar (not acrid or bitter) Sweet, slightly minerally- medicinal finish Strong burnt sugar flavor, slightly bitter and acrid Burnt sugar, bitter and slightly acrid Sweet, no other flavor Fruity, strong dark caramel flavor, has a hint of tanginess in the finish - Different sugars e.g. unrefined, wort - Temperatures - Length of boil - Length of Inversion - Varying quantities *Source: Ryanbrews Blog
body • Blonde/Golden, Tripel, Saison, Cream ale etc. Maillard reactions • Dried fruit malt, Nutty, Bread, Toasty • Dubbel, Quadrupel, Scottish ale (not “allowed” for German styles…) etc. Caramelisation • Toffee, Caramel, Nutty, Rum • Old Ale, Barley wine, Wee Heavy, Stouts etc.