Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
lambdaの連鎖で作るRecommendEngine
Search
mahiguch
June 04, 2019
Programming
0
320
lambdaの連鎖で作るRecommendEngine
「Cloud Native Meetup Tokyo #8 ServiceMesh Day Recap」でのLT資料です。
mahiguch
June 04, 2019
Tweet
Share
More Decks by mahiguch
See All by mahiguch
爆速で成長する おでかけ情報サービスの成長を支えるデザインと開発の取り組みについて
mahiguch
0
55
WebView認証連携
mahiguch
0
69
メディアアプリLIMIAにおけるプッシュ通知配信システム
mahiguch
0
100
公式部活動技術書典部の活動紹介
mahiguch
0
120
エンジニア以外の方が自らSQLを使ってセグメント分析を行うカルチャーをどのように作っていったか
mahiguch
1
1.1k
PHPからgoへの移行で分かったこと
mahiguch
2
4.1k
BigQueryを使った機械学習プロジェクトの分析とオフライン検証
mahiguch
2
1.2k
gRPCを使ったメディアサービス2
mahiguch
0
230
LIMIAでのBigQuery活用事例
mahiguch
0
210
Other Decks in Programming
See All in Programming
Snowflake リリースに注意を払いたくなる話
masaaya
0
110
퇴근 후 1억이 거래되는 서비스 만들기 | 내가 AI를 사용하는 방법
maryang
2
550
Dive into Triton Internals
appleparan
0
490
組織もソフトウェアも難しく考えない、もっとシンプルな考え方で設計する #phpconfuk
o0h
PRO
10
4.1k
flutter_kaigi_2025.pdf
kyoheig3
1
260
Swift Concurrency 年表クイズ
omochi
3
230
Kotlinで実装するCPU/GPU 「協調的」パフォーマンス管理
matuyuhi
0
380
PHPライセンス変更の議論を通じて学ぶOSSライセンスの基礎
matsuo_atsushi
0
140
イベントストーミングのはじめかた / Getting Started with Event Storming
nrslib
1
360
Blazing Fast UI Development with Compose Hot Reload (droidcon London 2025)
zsmb
0
500
Phronetic Team with AI - Agile Japan 2025 closing
hiranabe
2
520
レイトレZ世代に捧ぐ、今からレイトレを始めるための小径
ichi_raven
0
280
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Documentation Writing (for coders)
carmenintech
76
5.1k
Designing for humans not robots
tammielis
254
26k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Making Projects Easy
brettharned
120
6.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
33
1.8k
Building Applications with DynamoDB
mza
96
6.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Transcript
lambdaの連鎖で作る Recommend Engine
Masahiro Higuchi / 樋口雅拓 • グリーグループのリミア株式会社で、LIMIA という住まい領域のメディアを 作っています。ゲーム会社ですが、最近はメディアに力を入れています。 • 機械学習のエンジニアですが、iOS,
Android,JSなどもやっている何でも屋 です。4歳の娘のパパ。twitter: @mahiguch1 • https://limia.jp/ • https://arine.jp/ • https://aumo.jp/ • https://www.mine-3m.com/mine/
LIMIAとは? • メディアサービス • 記事一覧を表示し、タップすると記事 詳細を閲覧できる。 • AWS:90%、GCP:10%。 • PHP/EC2
→ Go/ECS移行中 ユーザに最適なコンテンツを推薦する事 で、回遊性を向上させたい! → Recommend Engine(推薦システム)を 作ろう。
どうやってRecommendするのか • ユーザを10個ぐらいのセグメントに分類 • セグメント毎にCTRを計算 • 記事の投稿日時で補正したCTRが高い順にリストに掲載 → せっかく今から作るんだから、インスタンスを立てずに行こう!
ユーザモデル作成 ユーザが記事を閲覧すると、その情報が Kinesis に流れます。Lambdaで受け取り、直近10件の閲 覧履歴をDynamoDBに保存します。その変更を DynamoDB Streamに流し、Lambdaで受け取っ て記事のベクトルの平均をユーザベクトルとして DynamoDBに書き込みます。
ユーザ分類 ユーザの閲覧履歴は、 Kinesis経由でS3にも保 存されます。EMRでそれを読み込み、 k-means++で10セグメントに分割し、分割結果を BigQueryに書き込みます。BigQueryでセグメン ト毎の直近2時間のCTRを計算し、S3に書き戻し ます。それをDynamoDBに書きます。EMRでの 計算で出来るセグメントの中心ベクトルとアイデ アのベクトルも同様に
Dynamoに書き出します。 アイデアベクトル生成は 1日1回だと遅いので、 改善したい。
配信 ユーザが記事一覧を表示しようとすると、 Recommend Engineに問い合わせます。 Recommend Engineはユーザの直近10件の記事閲 覧履歴から所属するセグメントを選び、そのセグメント のユーザの直近2時間のCTRが高いものを表示しま す。ただし、古い記事ほど減点し、ユーザの前回ログ イン以降に投稿された記事は加点します。
Recommend Engineはgolangで書いて、 ECS/Fargateで動かしています。
システム構成図 パラメータ一覧 • ユーザベクトル生成は、即時。 • アイデアベクトル生成は、毎日。 • 辞書は2年前のwikipediaベース。 • CTRの計算は直近2時間。
• 推薦対象は、全記事。 • セグメントは10個。 これらについて、A/Bテストを行い、最適値を 探す。1Round 1週間として、6月末までに5回 行う。
まとめ • Recommend Engineは簡単に作れる。 • 今の所は既存編成ロジックより良い結果が出ている。 • システム的にはアイデアベクトル生成をリアルタイムで行いたい。しかし、 S3にある5GBの辞書 を読み込む必要があるため、
Lambdaで実行時に読み込むとコスト的にやばい。何か良いアイ デアがあれば教えて欲しい。 ありがとうございました。懇親会でぜひ声をかけてください!