Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
Search
Nealle
August 19, 2025
Programming
1
2.4k
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
2025/8/20
https://pug.connpass.com/event/364357/
#p_UG 東京:夏のデータ活用大共有会 データ活用の第一歩からAIにやさしいデータ基盤までお届け!
Nealle
August 19, 2025
Tweet
Share
More Decks by Nealle
See All by Nealle
Startup Tech Night ニーリーのAI活用
nealle
0
56
モビリティSaaSにおけるデータ利活用の発展
nealle
1
810
Pythonに漸進的に型をつける
nealle
1
190
品質ワークショップをやってみた
nealle
0
1.4k
DevHRに全部賭けろ
nealle
0
220
AI OCR API on Lambdaを Datadogで可視化してみた
nealle
0
380
生成AI、実際どう? - ニーリーの場合
nealle
0
1k
“いい感じ“な定量評価を求めて - Four Keysとアウトカムの間の探求 -
nealle
4
18k
ニーリーにおけるプロダクトエンジニア
nealle
0
1.4k
Other Decks in Programming
See All in Programming
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
280
TUIライブラリつくってみた / i-just-make-TUI-library
kazto
1
400
AIコーディングエージェント(skywork)
kondai24
0
190
愛される翻訳の秘訣
kishikawakatsumi
3
330
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
250
大体よく分かるscala.collection.immutable.HashMap ~ Compressed Hash-Array Mapped Prefix-tree (CHAMP) ~
matsu_chara
2
220
Graviton と Nitro と私
maroon1st
0
110
認証・認可の基本を学ぼう前編
kouyuume
0
260
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
130
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
410
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
230
MAP, Jigsaw, Code Golf 振り返り会 by 関東Kaggler会|Jigsaw 15th Solution
hasibirok0
0
260
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Tell your own story through comics
letsgokoyo
0
740
Google's AI Overviews - The New Search
badams
0
860
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
The Limits of Empathy - UXLibs8
cassininazir
1
190
The Language of Interfaces
destraynor
162
25k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
25
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
94
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandezseo
1
1.3k
The Cult of Friendly URLs
andyhume
79
6.7k
Transcript
TROCCO×dbtで実現する 人にもAIにもやさしいデータ基盤 2025.08.20 #p_UG 東京:夏のデータ活用大共有会 株式会社ニーリー 上田 健太郎 NEALLE 1
2022年8月にニーリーに入社。 Analyticsチームの1人目のメンバーとなり、 「事業や経営の意思決定を支援するデータ分析結果の創出」をミッションに、 データ基盤構築から分析まで幅広く対応。 2 自己紹介 株式会社ニーリー Analyticsチーム エンジニア 上田
健太郎
3 プロダクト紹介
4 今日のお話 • 分析の属人化防止 (イネーブリング) のために、TROCCO×dbtでデータマートを整備した • 結果、属人化防止だけでなく、AI活用にも繋がった = 人にもAIにもやさしいデータ基盤
• 同時に、人 (Analytics Eng.) が注力すべきポイントも見えてきた
5 なぜTROCCO? : 2023年10月頃 • より事業貢献に近い領域 (データマート整備や分析) に注力したかった • データソース毎にETLを自前実装するのはマンパワー的にも困難
◦ チーム発足当初は1名体制 (現在は5名) • テーブルやカラムの追加削除も多く、独自実装での検知・追従は非現実的
6 なぜTROCCO? : 2023年10月頃 • より事業貢献に近い領域 (データマート整備や分析) に注力したかった • データソース毎にETLを自前実装するのはマンパワー的にも困難
◦ チーム発足当初は1名体制 (現在は5名) • テーブルやカラムの追加削除も多く、独自実装での検知・追従は非現実的 ※ BQに直接転送しているデータソースは省略 (GAなど)
▼導入効果 • テーブル・カラム自動追従や豊富なコネクタにより ETLが楽になり、マート整備・分析に注力できた • サポートが充実しているのも大変ありがたかった 7 なぜTROCCO? : 2023年10月頃
• より事業貢献に近い領域 (データマート整備や分析) に注力したかった • データソース毎にETLを自前実装するのはマンパワー的にも困難 ◦ チーム発足当初は1名体制 (現在は5名) • テーブルやカラムの追加削除も多く、独自実装での検知・追従は非現実的 ※ BQに直接転送しているデータソースは省略 (GAなど)
8 なぜdbt?: 2025年3月頃 • 2024年の中盤からデータ分析の依頼が増加し続け、データ活用のイネーブリングが急務に。 同時に分析用に加工済みのデータマートの重要性が増した • dbtはデータマート定義はもちろん、データカタログの出力も可能 • TROCCOはdbt連携
(実行) が可能なので、渡りに船だった
9 なぜdbt?: 2025年3月頃 • 2024年の中盤からデータ分析の依頼が増加し続け、データ活用のイネーブリングが急務に。 同時に分析用に加工済みのデータマートの重要性が増した • dbtはデータマート定義はもちろん、データカタログの出力も可能 • TROCCOはdbt連携
(実行) が可能なので、渡りに船だった
▼導入効果 • メンテフリーのdbt実行環境が手に入った • マート&カタログにより分析クエリ作成に必要な知識が 大幅に低減。Bizメンバーの分析参画が増加 • dbt testなどの諸機能によりデータの信頼性・整備性が向上 10
なぜdbt?: 2025年3月頃 • 2024年の中盤からデータ分析の依頼が増加し続け、データ活用のイネーブリングが急務に。 同時に分析用に加工済みのデータマートの重要性が増した • dbtはデータマート定義はもちろん、データカタログの出力も可能 • TROCCOはdbt連携 (実行) が可能なので、渡りに船だった
11 なぜAI?: 2025年7月頃 • 元々、属人化防止のために分析SQLには丁寧にコメントをつけていた ◦ 作成経緯、1行の粒度、CTE単位の処理説明、編集履歴など • マート&カタログだけでは一部のbizメンバーの分析イネーブリングに留まっていた •
手元の生成AIにSQLとdbtモデルを読ませると、結構な精度でSQLを作成できることが判明 • そんな中、社内にAI担当チームも発足。「AI Analytics Chatbot」を作ることに
12 なぜAI?: 2025年7月頃 • 元々、属人化防止のために分析SQLには丁寧にコメントをつけていた ◦ 作成経緯、1行の粒度、CTE単位の処理説明、編集履歴など • マート&カタログだけでは一部のbizメンバーの分析イネーブリングに留まっていた •
手元の生成AIにSQLとdbtモデルを読ませると、結構な精度でSQLを作成できることが判明 • そんな中、社内にAI担当チームも発足。「AI Analytics Chatbot」を作ることに
13 なぜAI?: 2025年7月頃 • 元々、属人化防止のために分析SQLには丁寧にコメントをつけていた ◦ 作成経緯、1行の粒度、CTE単位の処理説明、編集履歴など • マート&カタログだけでは一部のbizメンバーの分析イネーブリングに留まっていた •
手元の生成AIにSQLとdbtモデルを読ませると、結構な精度でSQLを作成できることが判明 • そんな中、社内にAI担当チームも発足。「AI Analytics Chatbot」を作ることに ▼導入効果 • AnalyticsチームのSQL開発は圧倒的に効率化 • SQLコメントとdbt定義のマート群はAIにも 解釈しやすかったようで、初版で使える精度を実現 • Bizメンバーへの効果は計測中 (公開後間もないため)
14 見えてきたポイント: 人にもAIにも優しい基盤を実現するには? No. ポイント アクション 効果 1 徹底的なドキュメンテーション ・dbtモデルでのdescription記載の強制
・分析用SQLへのコメント記載の徹底 ・分析の属人化防止 (イネーブリング) ・AI回答精度の向上 2 分析用データマートの充実化 ・複雑なjoinやcase式、Biz指標の定義を隠蔽 3 利用者とのコミュニケーション ・定期的な分析・マート需要のヒアリング ・実用性の高い データマートの企画 4 マネージドな仕組みの活用 ・TROCCO×dbt でETL・データ検証に 要する時間を削減 ・上記対応の時間の捻出 1~4は同時に、人 (Analytics Eng.) が注力すべきポイント = AIに代替されにくいポイント でもあると思う
ニーリーではプロダクトエンジニア、 その他のポジションも積極採用中です! https://jobs.nealle.com/ We are hiring!!!