$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Athenaで気軽に始める データ分析/athena-data-analytics
Search
marchin
August 31, 2023
Programming
0
590
Amazon Athenaで気軽に始める データ分析/athena-data-analytics
marchin
August 31, 2023
Tweet
Share
More Decks by marchin
See All by marchin
ブラックフライデーで購入したPixel9で、Gemini Nanoを動かしてみた
marchin1989
1
770
WebAPI開発のためのOpenAPI入門/entry-open-api
marchin1989
1
1.3k
AWS Glueではじめるデータレイク
marchin1989
0
670
やさしく入門するOAuth2.0/easy-entry-oauth
marchin1989
8
2.4k
1時間半で克服するJavaScriptの非同期処理/async_javascript_kokufuku
marchin1989
2
1.5k
自動テストでモックするって、なにそれ?おいしいの?/what_is_mocking
marchin1989
1
1.2k
たぶんもう怖くないGit/maybe-not-afraid-of-git-anymore
marchin1989
2
2.6k
モバイルアプリで機械学習入門/introduction-to-machine-learning-in-mobile-app
marchin1989
0
490
Other Decks in Programming
See All in Programming
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
460
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
3.2k
Developing static sites with Ruby
okuramasafumi
0
310
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
550
愛される翻訳の秘訣
kishikawakatsumi
3
330
Cap'n Webについて
yusukebe
0
140
宅宅自以為的浪漫:跟 AI 一起為自己辦的研討會寫一個售票系統
eddie
0
520
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
130
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
420
Github Copilotのチャット履歴ビューワーを作りました~WPF、dotnet10もあるよ~ #clrh111
katsuyuzu
0
120
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
2.9k
Featured
See All Featured
Being A Developer After 40
akosma
91
590k
Getting science done with accelerated Python computing platforms
jacobtomlinson
0
75
Designing Powerful Visuals for Engaging Learning
tmiket
0
180
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
How to Talk to Developers About Accessibility
jct
1
82
Odyssey Design
rkendrick25
PRO
0
430
Fireside Chat
paigeccino
41
3.8k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
160
Documentation Writing (for coders)
carmenintech
77
5.2k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
160
Transcript
Amazon Athenaで 気軽に始めるデータ分析
自己紹介 名前 :阿部 真之 仕事 :株式会社ゆめみ。サーバーサイド、Androidのリードエンジニア 趣味 :コーヒー、ビール、アニメ、ゲーム、読書、etc… Twitter:@marchin_1989
前置き 対象者 - なにかしらデータ分析に関わる方 - AWS Athenaを触ったことがない方 前提とする知識 - AWSのサービスを少しでも触ったことがある方
- SQLを触ったことがある方
アジェンダ - Amazon Athenaとは - Amazon Athenaのデモ
Amazon Athenaとは
Amazon Athena - S3や、様々なデータソースに対して、SQLでクエリできるインタラクティブな分析サービス。 - サーバーレスでインフラ管理不要。 - 大規模データに対しても高速なクエリが可能。 - ユースケース
- アナリストやデータサイエンティストによるアドホックな分析 - S3にあげて、テーブル定義後、すぐクエリ可能。 - ログ分析 - S3に保存した、ログデータに対してクエリ - ETLパイプライン
デモ
デモ - AWSマネジメントコンソールの「クエリエディタ」からクエリを実行してみる。
デモ - 公式のチュートリアルを実施 - https://docs.aws.amazon.com/ja_jp/athena/latest/ug/getting-started.html - サンプルデータ - s3://athena-examples-ap-northeast-1/cloudfront/plaintext/ -
CFのアクセスログ
デモの流れ 1. クエリ結果保存用のS3バケットを指定する 2. データベースを作成する 3. テーブルを作成する 4. クエリする
1. クエリ結果保存用のS3バケットを指定する
2. データベースを作成する
3. テーブルを作成する
4. クエリする
その他 - 基本的にクエリのスキャン量で課金される。1 TB あたり5USD。 - スキャン量を削減することで、パフォーマンスが向上し、料金が安くなる。 - パーティション化 -
Hive形式(例: s3://bucketname/year=2023/month=05/day=08/…)のS3に対して、テーブル 作成時にパーティションを指定する。 - Federated Query - S3だけでなく、RDS、DynamoDBといった様々なデータソースに対してクエリを実行可能。 - S3のデータに対して、RDSのテーブルを結合してクエリできる。 - クエリエディタ以外でも、アプリケーションなどからJDBC経由、AWS SDK(API)経 由で実行可能。
まとめ - Amazon Athenaは、S3や、様々なデータソースに対して、SQLでクエリできるイン タラクティブな分析サービス。 - S3にデータを溜めておけば、気軽にデータ分析が始められる。
参考文献 ・YouTube, 【AWS Black Belt Online Seminar】Amazon Athena,https://www.youtube.com/watch?v=6FLkOE60Pfs,(2020/06/18) ・AWS, Amazon
Athena とは, https://docs.aws.amazon.com/ja_jp/athena/latest/ug/what-is.html