Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
モバイルアプリで機械学習入門/introduction-to-machine-learning...
Search
marchin
December 09, 2021
Programming
0
460
モバイルアプリで機械学習入門/introduction-to-machine-learning-in-mobile-app
marchin
December 09, 2021
Tweet
Share
More Decks by marchin
See All by marchin
ブラックフライデーで購入したPixel9で、Gemini Nanoを動かしてみた
marchin1989
1
730
Amazon Athenaで気軽に始める データ分析/athena-data-analytics
marchin1989
0
560
WebAPI開発のためのOpenAPI入門/entry-open-api
marchin1989
1
1.3k
AWS Glueではじめるデータレイク
marchin1989
0
630
やさしく入門するOAuth2.0/easy-entry-oauth
marchin1989
8
1.9k
1時間半で克服するJavaScriptの非同期処理/async_javascript_kokufuku
marchin1989
2
1.4k
自動テストでモックするって、なにそれ?おいしいの?/what_is_mocking
marchin1989
1
1.2k
たぶんもう怖くないGit/maybe-not-afraid-of-git-anymore
marchin1989
2
2.5k
Other Decks in Programming
See All in Programming
코딩 에이전트 체크리스트: Claude Code ver.
nacyot
0
1k
バイブコーディングの正体——AIエージェントはソフトウェア開発を変えるか?
stakaya
2
210
オンコール⼊⾨〜ページャーが鳴る前に、あなたが備えられること〜 / Before The Pager Rings
yktakaha4
2
1.2k
LLMは麻雀を知らなすぎるから俺が教育してやる
po3rin
2
1.4k
Go製CLIツールをnpmで配布するには
syumai
0
900
MCP連携で加速するAI駆動開発/mcp integration accelerates ai-driven-development
bpstudy
0
190
ご注文の差分はこちらですか? 〜 AWS CDK のいろいろな差分検出と安全なデプロイ
konokenj
4
720
テスターからテストエンジニアへ ~新米テストエンジニアが歩んだ9ヶ月振り返り~
non0113
2
240
Strands Agents で実現する名刺解析アーキテクチャ
omiya0555
1
110
CIを整備してメンテナンスを生成AIに任せる
hazumirr
0
370
Comparing decimals in Swift Testing
417_72ki
0
130
PHPUnitの限界をPlaywrightで補完するテストアプローチ
yuzneri
0
360
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
7
530
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Typedesign – Prime Four
hannesfritz
42
2.7k
Done Done
chrislema
185
16k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Speed Design
sergeychernyshev
32
1k
How to Ace a Technical Interview
jacobian
278
23k
The Language of Interfaces
destraynor
158
25k
Transcript
モバイルアプリで機械学習入門 ML Kitを使ったカメラアプリ実装
自己紹介 - 名前: 阿部 - 仕事: 主にAndroidエンジニア - 最近はサーバサイド Kotlinの仕事も始めました
- 趣味 - コーヒー、ビール、アニメ、ゲーム、読書、 etc... - Twitter: @marchin_1989
アジェンダ - on-device machine learning とは - MLKitの紹介 - MLKit
Face Detectionの機能の説明とデモンストレーション
on-device machine learning(on-device ML)とは - サーバ側ではなく、モバイルといったクライアントサイドで機械学習を行うこと
- 要件によるが以下のようなことを検討して決める。 クライアント(on-device)、サーバ、どちらでMLするか クライアント (on-device ML) リアルタイムに処理したい (ネットワーク通信の遅延がない ) データをサーバにあげたくない
ネットワークに繋げられない サーバ マシンパワーが必要 常に最新のモデルを使う必要がある 学習済みモデルを守りたい
on-device MLの例(スマホアプリ) - Google翻訳 - YouTube(AR Beauty Try-On) 出典: ITmedia
NEWS https://www.itmedia.co.jp/news/articles/1906/20/news069.html 出典: Google Play https://play.google.com/store/apps/details?id=com.google.android.apps.translate
on-device MLの機能を実装するためのフレームワーク - モバイル端末上で推論するためのフレー ムワーク。 - tensor flowで作ったモデルをtensor flow liteのモデルに変換できる
- Android, iOS, IoTデバイスで利用可能 - TensorFLow hubに学習済みのモデルが 提供されていたりする - よくある機械学習のユースケースと学習済み モデルをラップして、使いやすくしたもの。 - 機能によってはカスタムの TensorFlow Lite のモデルが使える。 - Android, iOSで利用可能
on-device MLをスクラッチで作成すると... 出典: Google I/O 2021 TensorFlowセッション ML Kit: Turnkey
APIs to use on-device ML in mobile apps | Session https://www.youtube.com/watch?v=CQ8iEqblWtY
ML Kitを使うと... 出典: Google I/O 2021 TensorFlowセッション ML Kit: Turnkey
APIs to use on-device ML in mobile apps | Session https://www.youtube.com/watch?v=CQ8iEqblWtY
ML Kitの機能 出典: Google Developers blog https://developers.googleblog.com/2021/03/ml-kit-is-now-in-ga-introducing-selfie.html
ML Kitの機能 出典: Google Developers blog https://developers.googleblog.com/2021/03/ml-kit-is-now-in-ga-introducing-selfie.html
Face detectionの機能 - 顔認識 - 画像内のどこに顔があるのか認識(複数の顔も可能) - 顔のトラッキング - 一度認識した顔を、流れてくる画像に対してトラッキングしてくれる。
- ランドマーク - 顔の輪郭や、左目、右目、眉毛、口、鼻の位置などが画像内のどこにあるか - 分類 - 目が開いているのか、閉じているのか - 笑っているのか 出典: ML Kit Guides https://developers.google.com/ml-kit/vision/face-detection/face-detection-concepts
Face detectionの実装 - 依存モジュールを組み込む - 推論対象のイメージを渡す - 推論結果を処理する
Face detectionの実装
作ってみた(デモ) - 笑顔を認識して、自動で写真を撮ってくれるカメラアプリ(Android) - セルフィーでボタンが押しづらい - 全員笑ってる写真を撮りたい etc - Face
detectionを使う - https://developers.google.com/ml-kit/vision/face-detection
サンプルアプリの実装の概略 - CameraXを利用 - FaceDetectorがMLKitのクラス
TensorFlow Lite or MLKit? - まずはMLKitがおすすめ - 認識精度、パフォーマンスが悪いなど要件が合わなければ TensorFlow Liteを検討
- 自前でモデルを作ったとしても、推論結果をアプリで使いやすいように実装する必要がある - MLKitが認識できない例 - どの国の国旗か - どの会社のロゴか - その人が誰なのか - どのブランドの製品なのか - どの昆虫の種類なのか
on-device ML向けのモデルを作るには? - TensorFlowでモデルを作り、TensorFlow Liteに変換 - AutoML - TensorFlow Lite
Model Maker - 転移学習を用いて、 on-device向けにモデルを作成できるライブラリ。
on-device MLを組み込むときに迷ったら - On-Device Machine Learning - https://developers.google.com/learn/topics/on-device-ml - プラットフォームやユースケースを選ぶと、適切な方法を提示してくれる。
まとめ - まずはMLKitがおすすめ - やりたいことに応じて、自分でモデルを作るか検討しましょう