Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Data Pipelines in Python
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Marco Bonzanini
April 16, 2016
Programming
2
580
Building Data Pipelines in Python
Slides of my talk at PyCon7 in Florence (April 2016)
Marco Bonzanini
April 16, 2016
Tweet
Share
More Decks by Marco Bonzanini
See All by Marco Bonzanini
Pitfalls in Data Science Projects (and how to avoid them)
marcobonzanini
0
63
Is Your Open-source LLM Really Open?
marcobonzanini
0
74
Perambulations in Football Analytics
marcobonzanini
0
54
Natural Language Processing Expert Briefing @ PyData Global 2022
marcobonzanini
0
100
Natural Language Processing Expert Briefing @ PyData Global 2021
marcobonzanini
0
130
Getting into Data Science @ HisarCS 2021
marcobonzanini
0
280
Mining topics in documents with topic modelling and Python @ London Python meetup
marcobonzanini
1
220
Topic Modelling workshop @ PyCon UK 2019
marcobonzanini
2
120
Lies, Damned Lies, and Statistics @ PyCon UK 2019
marcobonzanini
0
150
Other Decks in Programming
See All in Programming
Fluid Templating in TYPO3 14
s2b
0
130
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
400
CSC307 Lecture 04
javiergs
PRO
0
660
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
3.9k
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
430
CSC307 Lecture 01
javiergs
PRO
0
690
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
370
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
120
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
260
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
今から始めるClaude Code超入門
448jp
8
8.6k
Featured
See All Featured
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
120
Between Models and Reality
mayunak
1
190
Thoughts on Productivity
jonyablonski
74
5k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
410
Into the Great Unknown - MozCon
thekraken
40
2.3k
The agentic SEO stack - context over prompts
schlessera
0
630
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
180
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
56
Transcript
Building Data Pipelines in Python Marco Bonzanini ! PyCon Italia
- Florence 2016
Nice to meet you • @MarcoBonzanini • “Type B” Data
Scientist • PhD in Information Retrieval • Book with PacktPub (July 2016) • Usually at PyData London
R&D ≠ Engineering R&D results in production = high value
None
Big Data Problems vs Big Data Problems
Data Pipelines Data ETL Analytics • Many components in a
data pipeline: • Extract, Clean, Augment, Join data
Good Data Pipelines Easy to reproduce Easy to productise
Towards Good Pipelines • Transform your data, don’t overwrite •
Break it down into components • Different packages (e.g. setup.py) • Unit tests vs end-to-end tests Good = Replicable and Productisable
Anti-Patterns • Bunch of scripts • Single run-everything script •
Hacky homemade dependency control • Don’t reinvent the wheel
Intermezzo Let me rant about testing Icon by Freepik from
flaticon.com
(Unit) Testing • Unit tests in three easy steps: •
import unittest • Write your tests • Quit complaining about lack of time to write tests
Benefits of (unit) testing • Safety net for refactoring •
Safety net for lib upgrades • Validate your assumptions • Document code / communicate your intentions • You’re forced to think
Testing: not convinced yet?
Testing: not convinced yet?
Testing: not convinced yet? f1 = fscore(p, r) min_bound,
max_bound = sorted([p, r]) assert min_bound <= f1 <= max_bound
Testing: I’m almost done • Unit tests vs Defensive Programming
• Say no to tautologies • Say no to vanity tests • Know the ecosystem: py.test, nosetests, hypothesis, coverage.py, …
</rant>
Intro to Luigi GNU Make + Unix pipes + Steroids
• Workflow manager in Python, by Spotify • Dependency management • Error control, checkpoints, failure recovery • Minimal boilerplate • Dependency graph visualisation $ pip install luigi
Luigi Task: unit of execution class MyTask(luigi.Task): ! def requires(self):
pass # list of dependencies def output(self): pass # task output def run(self): pass # task logic
Luigi Target: output of a task class MyTarget(luigi.Target): ! def
exists(self): pass # return bool Off the shelf support for local file system, S3, Elasticsearch, RDBMS (also via luigi.contrib)
Not only Luigi • More Python-based workflow managers: • Airflow
by Airbnb • Mrjob by Yelp • Pinball by Pinterest
When things go wrong • import logging • Say no
to print() for debugging • Custom log format / extensive info • Different levels of severity • Easy to switch off or change level
Who reads the logs? You’re not going to read the
logs, unless… • E-mail notifications • built-in in Luigi • Slack notifications $ pip install luigi_slack # WIP
Summary • R&D is not Engineering: can we meet halfway?
• Prototypes vs. Products • Automation and replicability matter • You need a workflow manager • Good engineering principles help: • Testing, logging, packaging, …
Vanity Slide • speakerdeck.com/marcobonzanini • github.com/bonzanini • marcobonzanini.com • @MarcoBonzanini