Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Data Pipelines in Python
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Marco Bonzanini
April 16, 2016
Programming
2
580
Building Data Pipelines in Python
Slides of my talk at PyCon7 in Florence (April 2016)
Marco Bonzanini
April 16, 2016
Tweet
Share
More Decks by Marco Bonzanini
See All by Marco Bonzanini
Pitfalls in Data Science Projects (and how to avoid them)
marcobonzanini
0
61
Is Your Open-source LLM Really Open?
marcobonzanini
0
72
Perambulations in Football Analytics
marcobonzanini
0
51
Natural Language Processing Expert Briefing @ PyData Global 2022
marcobonzanini
0
100
Natural Language Processing Expert Briefing @ PyData Global 2021
marcobonzanini
0
130
Getting into Data Science @ HisarCS 2021
marcobonzanini
0
280
Mining topics in documents with topic modelling and Python @ London Python meetup
marcobonzanini
1
220
Topic Modelling workshop @ PyCon UK 2019
marcobonzanini
2
120
Lies, Damned Lies, and Statistics @ PyCon UK 2019
marcobonzanini
0
140
Other Decks in Programming
See All in Programming
クラウドに依存しないS3を使った開発術
simesaba80
0
230
Implementation Patterns
denyspoltorak
0
250
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
390
ゆくKotlin くるRust
exoego
1
210
AgentCoreとHuman in the Loop
har1101
5
200
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
2.3k
Fragmented Architectures
denyspoltorak
0
120
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
340
Architectural Extensions
denyspoltorak
0
210
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
5
3.9k
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
170
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
2.3k
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1371
200k
Deep Space Network (abreviated)
tonyrice
0
35
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
KATA
mclloyd
PRO
33
15k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
120
Paper Plane (Part 1)
katiecoart
PRO
0
3.4k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
190
WENDY [Excerpt]
tessaabrams
9
35k
Testing 201, or: Great Expectations
jmmastey
46
7.9k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
280
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1k
Transcript
Building Data Pipelines in Python Marco Bonzanini ! PyCon Italia
- Florence 2016
Nice to meet you • @MarcoBonzanini • “Type B” Data
Scientist • PhD in Information Retrieval • Book with PacktPub (July 2016) • Usually at PyData London
R&D ≠ Engineering R&D results in production = high value
None
Big Data Problems vs Big Data Problems
Data Pipelines Data ETL Analytics • Many components in a
data pipeline: • Extract, Clean, Augment, Join data
Good Data Pipelines Easy to reproduce Easy to productise
Towards Good Pipelines • Transform your data, don’t overwrite •
Break it down into components • Different packages (e.g. setup.py) • Unit tests vs end-to-end tests Good = Replicable and Productisable
Anti-Patterns • Bunch of scripts • Single run-everything script •
Hacky homemade dependency control • Don’t reinvent the wheel
Intermezzo Let me rant about testing Icon by Freepik from
flaticon.com
(Unit) Testing • Unit tests in three easy steps: •
import unittest • Write your tests • Quit complaining about lack of time to write tests
Benefits of (unit) testing • Safety net for refactoring •
Safety net for lib upgrades • Validate your assumptions • Document code / communicate your intentions • You’re forced to think
Testing: not convinced yet?
Testing: not convinced yet?
Testing: not convinced yet? f1 = fscore(p, r) min_bound,
max_bound = sorted([p, r]) assert min_bound <= f1 <= max_bound
Testing: I’m almost done • Unit tests vs Defensive Programming
• Say no to tautologies • Say no to vanity tests • Know the ecosystem: py.test, nosetests, hypothesis, coverage.py, …
</rant>
Intro to Luigi GNU Make + Unix pipes + Steroids
• Workflow manager in Python, by Spotify • Dependency management • Error control, checkpoints, failure recovery • Minimal boilerplate • Dependency graph visualisation $ pip install luigi
Luigi Task: unit of execution class MyTask(luigi.Task): ! def requires(self):
pass # list of dependencies def output(self): pass # task output def run(self): pass # task logic
Luigi Target: output of a task class MyTarget(luigi.Target): ! def
exists(self): pass # return bool Off the shelf support for local file system, S3, Elasticsearch, RDBMS (also via luigi.contrib)
Not only Luigi • More Python-based workflow managers: • Airflow
by Airbnb • Mrjob by Yelp • Pinball by Pinterest
When things go wrong • import logging • Say no
to print() for debugging • Custom log format / extensive info • Different levels of severity • Easy to switch off or change level
Who reads the logs? You’re not going to read the
logs, unless… • E-mail notifications • built-in in Luigi • Slack notifications $ pip install luigi_slack # WIP
Summary • R&D is not Engineering: can we meet halfway?
• Prototypes vs. Products • Automation and replicability matter • You need a workflow manager • Good engineering principles help: • Testing, logging, packaging, …
Vanity Slide • speakerdeck.com/marcobonzanini • github.com/bonzanini • marcobonzanini.com • @MarcoBonzanini