Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Data Pipelines in Python
Search
Marco Bonzanini
April 16, 2016
Programming
2
550
Building Data Pipelines in Python
Slides of my talk at PyCon7 in Florence (April 2016)
Marco Bonzanini
April 16, 2016
Tweet
Share
More Decks by Marco Bonzanini
See All by Marco Bonzanini
Pitfalls in Data Science Projects (and how to avoid them)
marcobonzanini
0
14
Is Your Open-source LLM Really Open?
marcobonzanini
0
29
Perambulations in Football Analytics
marcobonzanini
0
18
Natural Language Processing Expert Briefing @ PyData Global 2022
marcobonzanini
0
72
Natural Language Processing Expert Briefing @ PyData Global 2021
marcobonzanini
0
95
Getting into Data Science @ HisarCS 2021
marcobonzanini
0
220
Mining topics in documents with topic modelling and Python @ London Python meetup
marcobonzanini
1
190
Topic Modelling workshop @ PyCon UK 2019
marcobonzanini
2
92
Lies, Damned Lies, and Statistics @ PyCon UK 2019
marcobonzanini
0
99
Other Decks in Programming
See All in Programming
Lottieアニメーションをカスタマイズしてみた
tahia910
0
120
2,500万ユーザーを支えるSREチームの6年間のスクラムのカイゼン
honmarkhunt
6
5.1k
XStateを用いた堅牢なReact Components設計~複雑なClient Stateをシンプルに~ @React Tokyo ミートアップ #2
kfurusho
1
770
CI改善もDatadogとともに
taumu
0
110
JavaScriptツール群「UnJS」を5分で一気に駆け巡る!
k1tikurisu
10
1.8k
Multi Step Form, Decentralized Autonomous Organization
pumpkiinbell
1
660
ファインディの テックブログ爆誕までの軌跡
starfish719
2
1.1k
Linux && Docker 研修/Linux && Docker training
forrep
23
4.5k
GitHub Actions × RAGでコードレビューの検証の結果
sho_000
0
240
さいきょうのレイヤードアーキテクチャについて考えてみた
yahiru
3
730
SRE、開発、QAが協業して挑んだリリースプロセス改革@SRE Kaigi 2025
nealle
3
4.1k
GAEログのコスト削減
mot_techtalk
0
110
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
Optimizing for Happiness
mojombo
376
70k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
GitHub's CSS Performance
jonrohan
1030
460k
Testing 201, or: Great Expectations
jmmastey
41
7.2k
Faster Mobile Websites
deanohume
306
31k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
Site-Speed That Sticks
csswizardry
3
370
Building Applications with DynamoDB
mza
93
6.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
Transcript
Building Data Pipelines in Python Marco Bonzanini ! PyCon Italia
- Florence 2016
Nice to meet you • @MarcoBonzanini • “Type B” Data
Scientist • PhD in Information Retrieval • Book with PacktPub (July 2016) • Usually at PyData London
R&D ≠ Engineering R&D results in production = high value
None
Big Data Problems vs Big Data Problems
Data Pipelines Data ETL Analytics • Many components in a
data pipeline: • Extract, Clean, Augment, Join data
Good Data Pipelines Easy to reproduce Easy to productise
Towards Good Pipelines • Transform your data, don’t overwrite •
Break it down into components • Different packages (e.g. setup.py) • Unit tests vs end-to-end tests Good = Replicable and Productisable
Anti-Patterns • Bunch of scripts • Single run-everything script •
Hacky homemade dependency control • Don’t reinvent the wheel
Intermezzo Let me rant about testing Icon by Freepik from
flaticon.com
(Unit) Testing • Unit tests in three easy steps: •
import unittest • Write your tests • Quit complaining about lack of time to write tests
Benefits of (unit) testing • Safety net for refactoring •
Safety net for lib upgrades • Validate your assumptions • Document code / communicate your intentions • You’re forced to think
Testing: not convinced yet?
Testing: not convinced yet?
Testing: not convinced yet? f1 = fscore(p, r) min_bound,
max_bound = sorted([p, r]) assert min_bound <= f1 <= max_bound
Testing: I’m almost done • Unit tests vs Defensive Programming
• Say no to tautologies • Say no to vanity tests • Know the ecosystem: py.test, nosetests, hypothesis, coverage.py, …
</rant>
Intro to Luigi GNU Make + Unix pipes + Steroids
• Workflow manager in Python, by Spotify • Dependency management • Error control, checkpoints, failure recovery • Minimal boilerplate • Dependency graph visualisation $ pip install luigi
Luigi Task: unit of execution class MyTask(luigi.Task): ! def requires(self):
pass # list of dependencies def output(self): pass # task output def run(self): pass # task logic
Luigi Target: output of a task class MyTarget(luigi.Target): ! def
exists(self): pass # return bool Off the shelf support for local file system, S3, Elasticsearch, RDBMS (also via luigi.contrib)
Not only Luigi • More Python-based workflow managers: • Airflow
by Airbnb • Mrjob by Yelp • Pinball by Pinterest
When things go wrong • import logging • Say no
to print() for debugging • Custom log format / extensive info • Different levels of severity • Easy to switch off or change level
Who reads the logs? You’re not going to read the
logs, unless… • E-mail notifications • built-in in Luigi • Slack notifications $ pip install luigi_slack # WIP
Summary • R&D is not Engineering: can we meet halfway?
• Prototypes vs. Products • Automation and replicability matter • You need a workflow manager • Good engineering principles help: • Testing, logging, packaging, …
Vanity Slide • speakerdeck.com/marcobonzanini • github.com/bonzanini • marcobonzanini.com • @MarcoBonzanini