Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
『エンタープライズ』という言葉の重さ 〜Data Vault 2.0をやめた2022年冬〜
Search
ikeda-masashi
December 14, 2022
Technology
2
5k
『エンタープライズ』という言葉の重さ 〜Data Vault 2.0をやめた2022年冬〜
https://forkwell.connpass.com/event/263245/
こちらのイベントの登壇内容です。
ikeda-masashi
December 14, 2022
Tweet
Share
More Decks by ikeda-masashi
See All by ikeda-masashi
Redshiftを中心としたAWSでのデータ基盤
mashiike
0
210
運用の役立たないダッシュボードの作り方。
mashiike
3
1.1k
Amazon Aurora MySQL と Amazon Redshift の Zero-ETL Integration について使い所を考えてみた!
mashiike
0
890
Warningアラートを放置しない!アラート駆動でログやメトリックを自動収集する仕組みによる恩恵
mashiike
6
4.1k
Prepalert ~Mackerelアラートにログや集計値を貼り付けてくれるトイル削減ツール~
mashiike
0
2k
人狼ゲームで考えるデータ基盤 〜データとはいったい・・・〜
mashiike
0
360
Redshift ServerlessとProvisioned Cluster のちょっとした違い
mashiike
0
6.3k
「北欧、暮らしの道具店」のデータ基盤の変遷
mashiike
1
3.5k
小規模ワークロードにおけるRedshift Serverlessのログの取り扱い
mashiike
0
640
Other Decks in Technology
See All in Technology
風が吹けばWHOISが使えなくなる~なぜWHOIS・RDAPはサーバー証明書のメール認証に使えなくなったのか~
orangemorishita
15
5.8k
リモートワークで心掛けていること 〜AI活用編〜
naoki85
0
150
마라톤 끝의 단거리 스퍼트: 2025년의 AI
inureyes
PRO
1
750
OPENLOGI Company Profile for engineer
hr01
1
38k
専門分化が進む分業下でもユーザーが本当に欲しかったものを追求するプロダクトマネジメント/Focus on real user needs despite deep specialization and division of labor
moriyuya
1
1.3k
ロールが細分化された組織でSREと協働するインフラエンジニアは何をするか? / SRE Lounge #18
kossykinto
0
220
Google Cloud で学ぶデータエンジニアリング入門 2025年版 #GoogleCloudNext / 20250805
kazaneya
PRO
22
5.3k
Findy Freelance 利用シーン別AI活用例
ness
0
500
Serverless Meetup #21
yoshidashingo
1
120
20250807_Kiroと私の反省会
riz3f7
0
230
Strands Agents & Bedrock AgentCoreを1分でおさらい
minorun365
PRO
8
330
AI時代の大規模データ活用とセキュリティ戦略
ken5scal
0
130
Featured
See All Featured
Navigating Team Friction
lara
188
15k
Art, The Web, and Tiny UX
lynnandtonic
301
21k
Making Projects Easy
brettharned
117
6.3k
We Have a Design System, Now What?
morganepeng
53
7.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Speed Design
sergeychernyshev
32
1.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Gamification - CAS2011
davidbonilla
81
5.4k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
How to Think Like a Performance Engineer
csswizardry
25
1.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
Transcript
『エンタープライズ』という言葉の重さ 〜 Data Vault 2.0をやめた2022年冬〜 2022/12/14 Data Engineering Study #17
18:25〜 池田将士
自己紹介 池田 将士 (@mashiike) 面白法人カヤック その他事業部 SREチーム所属 データエンジニア/サーバーサイドエンジニア 出身: 千葉県
趣味: オンラインゲームと食べ比べ、飲み比べ
会社紹介 鎌倉の地にて、主にWeb技術を用いて 人の印象に深く残るような面白コンテンツを作る会社 ゲームからWebサービス、ミュージアムetc… 様々なことに挑戦 ※幅広く挑戦しすぎて、 中の人も何の会社なのかよくわからないことも・・・
皆様 Data Vault 2.0 って知っていますか?
スケーラブルなエンタープライズ・ データウェアハウスを設計できるモ デリング手法Hub,Link, Satelliteと いう3つの構成要素で3NF系で・・・ (以下略
要は Agileに、 監査性のあって、 スケールしやすい データウェアハウス を構築できる手法!? (暴論)
約1年と4半期前(15ヶ月前) https://speakerdeck.com/mashiike/tonamelfalsedetaji-pan-detamoderingubian
15ヶ月前の状況 (2021/09頃) プロダクト側 • サーバーサイドエンジニア: 約3人 • サービス数(データソース数): 2個 データ基盤側
• データエンジニア: 約0.6人 (1人が他案件と兼務)
DataVault2.0いいぞ!!!
1年前の状況 (2022/01頃) プロダクト側 • サーバーサイドエンジニア: 約3人 => 約4人 • サービス数(データソース数):
2個 => 4個 データ基盤側 • データエンジニア: 約0.6人 (1人が他案件と兼務)
連携先(DB)が増えても 楽に対応できる!!いいね!
半年前の状況 (2022/06頃) プロダクト側 • サーバーサイドエンジニア: 約4人 => 約5人 • サービス数(データソース数):
4個 => 5個+α データ基盤側 • データエンジニア: 約0.6人 (1人が他案件と兼務)
ん?ちょっとまって・・・ プロダクトの開発早くない?
ちょっと前の状況 (2022/09頃) プロダクト側 • サーバーサイドエンジニア: 約6人 • サービス数(データソース数): 5個+α データ基盤側
• データエンジニア: 約0.6人 (1人が他案件と兼務)
お気づきだろうか? プロダクトの開発チームは スケールするが データチームは スケールしていない
そして、、、 データ基盤の保守! 手が回りません!!
どうしてこうなった!?
データチームの人を 採用できなかった・・・
というのもありますが、
スケーラブルなエンタープライズ・ データウェアハウスを設計できるモ デリング手法Hub,Link, Satelliteと いう3つの構成要素で3NF系で・・・ (以下略
スケーラブルなエンタープライズ・ データウェアハウスを設計できるモ デリング手法Hub,Link, Satelliteと いう3つの構成要素で3NF系で・・・ (以下略
https://e-words.jp/w/%E3%82%A8%E3%83%B3%E3%82%BF%E3%83%BC%E3%83%97%E3%83%A9% E3%82%A4%E3%82%BA.html
ウチは中小企業だ!!(エッ 従業員数:約300人くらい
どこがエンタープライズ向け?
どこがエンタープライズ向け? 3NFにしてモデルを疎結合な状態に するのが高コスト
どこがエンタープライズ向け? 3NFにしてモデルを疎結合な状態に するのが高コスト Sattelliteの履歴を保守管理するのが 高コスト
どこがエンタープライズ向け? 時間が立つにつれて Vault領域の保守難度が 爆発的に高くなる。 物量も多くなるので 1つのソースシステムに 少なくとも0.5人くらいはほしい。
で、どうする?
データ基盤の開発効率 ≒生産性を上げたい
ソフトウェアエンジニアリングの世界には ViewとModelを密結合させることで、 生産性を上げたフレームワークがある そう、Rails ※ただし、柔軟性に難が出てくる
そうだ! 柔軟性に関しては妥協 データマートと Stagingを密結合させよう!
None
None
None
DataVault 2.0 やめました。 2022年冬
で、これって・・・
https://zenn.dev/tenajima/articles/64caed131ba961 dbt style guide 通りじゃん!
まとめ 中小企業(データエンジニア1人未満)で Data Vault 2.0を導入した結果…
まとめ 中小企業(データエンジニア1人未満)で Data Vault 2.0を導入した結果… 手が回らなくなったので、やめた 気がついたらdbt style guide通りになっていた。
まとめ 中小企業(データエンジニア1人未満)で Data Vault 2.0を導入した結果… 手が回らなくなったので、やめた 気がついたらdbt style guide通りになっていた。 『エンタープライズ』と名がついているものは
データチームがスケールするなら良い選択肢 スケールしないなら、覚悟しよう。
広報活動 \カヤックに興味を持ってくださった方へ/ カヤック社員がどんな風に働いているか? どんな制作実績があるか? などの情報を定期的に配信しています! ニュースレターへ登録しませんか? https://hubspot.kayac.com/we_are_kayac
ありがとうございました。