$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
『エンタープライズ』という言葉の重さ 〜Data Vault 2.0をやめた2022年冬〜
Search
ikeda-masashi
December 14, 2022
Technology
2
5.5k
『エンタープライズ』という言葉の重さ 〜Data Vault 2.0をやめた2022年冬〜
https://forkwell.connpass.com/event/263245/
こちらのイベントの登壇内容です。
ikeda-masashi
December 14, 2022
Tweet
Share
More Decks by ikeda-masashi
See All by ikeda-masashi
Redshiftを中心としたAWSでのデータ基盤
mashiike
0
280
運用の役立たないダッシュボードの作り方。
mashiike
3
1.1k
Amazon Aurora MySQL と Amazon Redshift の Zero-ETL Integration について使い所を考えてみた!
mashiike
0
960
Warningアラートを放置しない!アラート駆動でログやメトリックを自動収集する仕組みによる恩恵
mashiike
6
4.3k
Prepalert ~Mackerelアラートにログや集計値を貼り付けてくれるトイル削減ツール~
mashiike
0
2k
人狼ゲームで考えるデータ基盤 〜データとはいったい・・・〜
mashiike
0
400
Redshift ServerlessとProvisioned Cluster のちょっとした違い
mashiike
0
6.8k
「北欧、暮らしの道具店」のデータ基盤の変遷
mashiike
1
3.6k
小規模ワークロードにおけるRedshift Serverlessのログの取り扱い
mashiike
0
660
Other Decks in Technology
See All in Technology
Haskell を武器にして挑む競技プログラミング ─ 操作的思考から意味モデル思考へ
naoya
6
1.4k
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
450
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
670
チーリンについて
hirotomotaguchi
6
1.8k
SSO方式とJumpアカウント方式の比較と設計方針
yuobayashi
7
590
AI活用によるPRレビュー改善の歩み ― 社内全体に広がる学びと実践
lycorptech_jp
PRO
1
200
[デモです] NotebookLM で作ったスライドの例
kongmingstrap
0
130
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
140
多様なデジタルアイデンティティを攻撃からどうやって守るのか / 20251212
ayokura
0
420
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
6
700
Debugging Edge AI on Zephyr and Lessons Learned
iotengineer22
0
170
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
220
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Code Reviewing Like a Champion
maltzj
527
40k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Speed Design
sergeychernyshev
33
1.4k
Producing Creativity
orderedlist
PRO
348
40k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Site-Speed That Sticks
csswizardry
13
990
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Transcript
『エンタープライズ』という言葉の重さ 〜 Data Vault 2.0をやめた2022年冬〜 2022/12/14 Data Engineering Study #17
18:25〜 池田将士
自己紹介 池田 将士 (@mashiike) 面白法人カヤック その他事業部 SREチーム所属 データエンジニア/サーバーサイドエンジニア 出身: 千葉県
趣味: オンラインゲームと食べ比べ、飲み比べ
会社紹介 鎌倉の地にて、主にWeb技術を用いて 人の印象に深く残るような面白コンテンツを作る会社 ゲームからWebサービス、ミュージアムetc… 様々なことに挑戦 ※幅広く挑戦しすぎて、 中の人も何の会社なのかよくわからないことも・・・
皆様 Data Vault 2.0 って知っていますか?
スケーラブルなエンタープライズ・ データウェアハウスを設計できるモ デリング手法Hub,Link, Satelliteと いう3つの構成要素で3NF系で・・・ (以下略
要は Agileに、 監査性のあって、 スケールしやすい データウェアハウス を構築できる手法!? (暴論)
約1年と4半期前(15ヶ月前) https://speakerdeck.com/mashiike/tonamelfalsedetaji-pan-detamoderingubian
15ヶ月前の状況 (2021/09頃) プロダクト側 • サーバーサイドエンジニア: 約3人 • サービス数(データソース数): 2個 データ基盤側
• データエンジニア: 約0.6人 (1人が他案件と兼務)
DataVault2.0いいぞ!!!
1年前の状況 (2022/01頃) プロダクト側 • サーバーサイドエンジニア: 約3人 => 約4人 • サービス数(データソース数):
2個 => 4個 データ基盤側 • データエンジニア: 約0.6人 (1人が他案件と兼務)
連携先(DB)が増えても 楽に対応できる!!いいね!
半年前の状況 (2022/06頃) プロダクト側 • サーバーサイドエンジニア: 約4人 => 約5人 • サービス数(データソース数):
4個 => 5個+α データ基盤側 • データエンジニア: 約0.6人 (1人が他案件と兼務)
ん?ちょっとまって・・・ プロダクトの開発早くない?
ちょっと前の状況 (2022/09頃) プロダクト側 • サーバーサイドエンジニア: 約6人 • サービス数(データソース数): 5個+α データ基盤側
• データエンジニア: 約0.6人 (1人が他案件と兼務)
お気づきだろうか? プロダクトの開発チームは スケールするが データチームは スケールしていない
そして、、、 データ基盤の保守! 手が回りません!!
どうしてこうなった!?
データチームの人を 採用できなかった・・・
というのもありますが、
スケーラブルなエンタープライズ・ データウェアハウスを設計できるモ デリング手法Hub,Link, Satelliteと いう3つの構成要素で3NF系で・・・ (以下略
スケーラブルなエンタープライズ・ データウェアハウスを設計できるモ デリング手法Hub,Link, Satelliteと いう3つの構成要素で3NF系で・・・ (以下略
https://e-words.jp/w/%E3%82%A8%E3%83%B3%E3%82%BF%E3%83%BC%E3%83%97%E3%83%A9% E3%82%A4%E3%82%BA.html
ウチは中小企業だ!!(エッ 従業員数:約300人くらい
どこがエンタープライズ向け?
どこがエンタープライズ向け? 3NFにしてモデルを疎結合な状態に するのが高コスト
どこがエンタープライズ向け? 3NFにしてモデルを疎結合な状態に するのが高コスト Sattelliteの履歴を保守管理するのが 高コスト
どこがエンタープライズ向け? 時間が立つにつれて Vault領域の保守難度が 爆発的に高くなる。 物量も多くなるので 1つのソースシステムに 少なくとも0.5人くらいはほしい。
で、どうする?
データ基盤の開発効率 ≒生産性を上げたい
ソフトウェアエンジニアリングの世界には ViewとModelを密結合させることで、 生産性を上げたフレームワークがある そう、Rails ※ただし、柔軟性に難が出てくる
そうだ! 柔軟性に関しては妥協 データマートと Stagingを密結合させよう!
None
None
None
DataVault 2.0 やめました。 2022年冬
で、これって・・・
https://zenn.dev/tenajima/articles/64caed131ba961 dbt style guide 通りじゃん!
まとめ 中小企業(データエンジニア1人未満)で Data Vault 2.0を導入した結果…
まとめ 中小企業(データエンジニア1人未満)で Data Vault 2.0を導入した結果… 手が回らなくなったので、やめた 気がついたらdbt style guide通りになっていた。
まとめ 中小企業(データエンジニア1人未満)で Data Vault 2.0を導入した結果… 手が回らなくなったので、やめた 気がついたらdbt style guide通りになっていた。 『エンタープライズ』と名がついているものは
データチームがスケールするなら良い選択肢 スケールしないなら、覚悟しよう。
広報活動 \カヤックに興味を持ってくださった方へ/ カヤック社員がどんな風に働いているか? どんな制作実績があるか? などの情報を定期的に配信しています! ニュースレターへ登録しませんか? https://hubspot.kayac.com/we_are_kayac
ありがとうございました。