Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
完全に理解した incremetal 〜そして、何もわからないへ〜
Search
ikeda-masashi
May 10, 2022
Technology
2
5.4k
完全に理解した incremetal 〜そして、何もわからないへ〜
dbt Tokyo meetup #3
https://dbt-tokyo.connpass.com/event/246144/
ikeda-masashi
May 10, 2022
Tweet
Share
More Decks by ikeda-masashi
See All by ikeda-masashi
Redshiftを中心としたAWSでのデータ基盤
mashiike
0
260
運用の役立たないダッシュボードの作り方。
mashiike
3
1.1k
Amazon Aurora MySQL と Amazon Redshift の Zero-ETL Integration について使い所を考えてみた!
mashiike
0
930
Warningアラートを放置しない!アラート駆動でログやメトリックを自動収集する仕組みによる恩恵
mashiike
6
4.2k
Prepalert ~Mackerelアラートにログや集計値を貼り付けてくれるトイル削減ツール~
mashiike
0
2k
人狼ゲームで考えるデータ基盤 〜データとはいったい・・・〜
mashiike
0
390
『エンタープライズ』という言葉の重さ 〜Data Vault 2.0をやめた2022年冬〜
mashiike
2
5.4k
Redshift ServerlessとProvisioned Cluster のちょっとした違い
mashiike
0
6.7k
「北欧、暮らしの道具店」のデータ基盤の変遷
mashiike
1
3.6k
Other Decks in Technology
See All in Technology
「タコピーの原罪」から学ぶ間違った”支援” / the bad support of Takopii
piyonakajima
0
160
20251027_findyさん_音声エージェントLT
almondo_event
2
510
パフォーマンスチューニングのために普段からできること/Performance Tuning: Daily Practices
fujiwara3
2
180
Amazon Q Developer CLIをClaude Codeから使うためのベストプラクティスを考えてみた
dar_kuma_san
0
260
個人でデジタル庁の デザインシステムをVue.jsで 作っている話
nishiharatsubasa
3
5.3k
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
400
Amazon Athena で JSON・Parquet・Iceberg のデータを検索し、性能を比較してみた
shigeruoda
1
270
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
6
1.5k
어떤 개발자가 되고 싶은가?
arawn
1
330
様々なファイルシステム
sat
PRO
0
280
オブザーバビリティが育むシステム理解と好奇心
maruloop
3
1.7k
Azure Well-Architected Framework入門
tomokusaba
1
150
Featured
See All Featured
Producing Creativity
orderedlist
PRO
348
40k
Optimizing for Happiness
mojombo
379
70k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
190
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6k
Balancing Empowerment & Direction
lara
5
710
For a Future-Friendly Web
brad_frost
180
10k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Transcript
{{ config(materialized=’incremental’) }} dbt Tokyo Meetup #3 5月10日(火曜日)11時〜12時 インクリメンタル https://developers.freee.co.jp/entry/understand-of-perfect-understandingより引用
『完全に理解した』、 〜そして、『何もわからない』へ〜 通称:ダニング ⹀クルーガー曲線 面白法人 カヤック 池田将士 ※ちなみに正式名称は株式会社です
自己紹介 池田 将士 (@mashiike) 技術部 SREチーム所属 職能、肩書きetc… • (自称)データエンジニア •
(仮称)アナリティクスエンジニア • SRE • サーバーサイドエンジニア Amazon S3 ※私のIconはS3バケットではありません
会社紹介 鎌倉の地にて、主にWeb技術を用いて 人の印象に深く残るような面白コンテンツを作る会社 ゲームからWebサービス、ミュージアムetc… 様々なことに挑戦
事業紹介 DBT + Data Vault 2.0 on Amazon Redshift 大会プラットフォームサービス『Tonamel』
Tonamelのデータ基盤にて
アジェンダ 1. DBTとMaterialization 2. {{ config(materialized=’incremental’) }} 『完全に理解した』 a. 基本的な使い方
b. ログ処理での例 3. {{ config(materialized=’incremental’) }}『なにもわからない』 a. カラムに変更が入ったら? b. 再処理したくなったら? c. upsertを実現するには? 4. incremental、それは... 今日のゴール
DBTとMaterialization DBTには4つのMaterializationが標準搭載されています( Custom materializationを作ることも可能)
DBTとMaterialization DBTには4つのMaterializationが標準搭載されています( Custom materializationを作ることも可能) • table: SELECTの結果を物理テーブル として保存する • view:
SELECTの結果を物理ビューと して保存する
DBTとMaterialization DBTには4つのMaterializationが標準搭載されています( Custom materializationを作ることも可能) • table: SELECTの結果を物理テーブル として保存する • view:
SELECTの結果を物理ビューと して保存する • ephemeral: 共通テーブル式(CTE)と して、他のモデルの実行時に埋め込ま れる
DBTとMaterialization DBTには4つのMaterializationが標準搭載されています( Custom materializationを作ることも可能) • table: SELECTの結果をDBテーブルと して保存する • view:
SELECTの結果をDBビューと して保存する • incremental: なんかいい感じに 物理テーブルを更新してくれるやつ!!(雑) • ephemeral: 共通テーブル式(CTE)と して、他のモデルの実行時に埋め込ま れる
Q. 『いい感じに』って具体的にどういう事?
Q. 『いい感じに』って具体的にどういう事? 初回実行時
Q. 『いい感じに』って具体的にどういう事? 初回実行時 2回目以降
Q. 『いい感じに』って具体的にどういう事? 初回実行時 2回目以降 なんか! いい感じに!! Tableを更新してる!!!!
つまり・・・ • 初回実行時は赤枠の中を描画しない で CREATE TABLE • 2回目以降は赤枠の中を描画して INSERT TABLE
つまり・・・ • 初回実行時は赤枠の中を描画しない で CREATE TABLE • 2回目以降は赤枠の中を描画して INSERT TABLE
{{ config(materialized=’incremental’) }} とは 1つのモデルを、1つの物理テーブルとして実現し 継続的に更新し続けるものなり!
実例:ログの処理の例 schema.yml version: 2 sources: - name: log tables: -
name: nginx_access_logs description: nginxのアクセスログ columns: - name: time description: アクセス時刻 - name: method description: リクエストメソッド - name: uri description: リクエストされた URI - name: protocol description: リクエストのプロトコル - name: status description: レスポンスステータスコード - name: vhost description: リクエストされたホスト名 - name: request_id description: リクエストID - name: partition_date description: ログ読み出しのパーティション • 初回実行時は全行ロード • 2回目以降は直近7日の未ロードのみ ※Redshift Spectrumを用いて読んでいて、 重複がなく、request_idで識別できることを想定した例です。
{{ config(materialized=’incremental’) }} 完全に理解した!!! 通称:ダニング ⹀クルーガー曲線 きっと今この辺
{{ config(materialized=’incremental’) }} とは 1つのモデルを、1つの物理テーブルとして実現し 継続的に更新し続けるもの
{{ config(materialized=’incremental’) }} とは 1つのモデルを、1つの物理テーブルとして実現し 継続的に更新し続けるもの つまり、運用が発生する
{{ config(materialized=’incremental’) }} とは 1つのモデルを、1つの物理テーブルとして実現し 継続的に更新し続けるもの つまり、運用が発生する a. 途中でカラムが増えてたら・・・ b.
再処理したくなったら・・・ c. upsertを実現するには・・・ etc. 例えば、運用中にこんな事思ったりしません?
ようこそ! 通称:ダニング ⹀クルーガー曲線 きっと今この辺 『何もわからない』への扉へ {{ config(materialized=’incremental’) }}
ようこそ! 通称:ダニング ⹀クルーガー曲線 きっと今この辺 『何もわからない』への扉へ {{ config(materialized=’incremental’) }} incrementalの難しさは運用にあり
Q.途中でカラムが増えてたら・・・ https://docs.getdbt.com/docs/building-a-dbt-project/building-models/configuring-incremental-models A. on_schema_changeの設定に従った挙動をする
Q.途中でカラムが増えてたら・・・ https://docs.getdbt.com/docs/building-a-dbt-project/building-models/configuring-incremental-models A. on_schema_changeの設定に従った挙動をする デフォルトはignoreで何もしない • 新しく列を追加しても Alterされない • 既存の列を削除しても
Alterされない ※モデルの更新が成功するかは targetのtypeによる。 この挙動はv0時代のもので、おす すめはしない
Q.途中でカラムが増えてたら・・・ https://docs.getdbt.com/docs/building-a-dbt-project/building-models/configuring-incremental-models A. on_schema_changeの設定に従った挙動をする failを指定するとエラーになる 対応方法もちゃんと提示される
Q.途中でカラムが増えてたら・・・ https://docs.getdbt.com/docs/building-a-dbt-project/building-models/configuring-incremental-models A. on_schema_changeの設定に従った挙動をする append_ new_columnsを指定すると • 新しく列を追加したら Alterされる •
既存の列を削除しても Alterされない ※削除された列は、 Insertのクエリから 省かれるので、基本的には NULL
Q.途中でカラムが増えてたら・・・ https://docs.getdbt.com/docs/building-a-dbt-project/building-models/configuring-incremental-models A. on_schema_changeの設定に従った挙動をする sync_all_columnsを指定すると • 新しく列を追加したら Alterされる • 既存の列を削除したら
Alterされる ※当然のごとく 列削除 => 列をもとに戻す としても、元のデータは入ってない
Q.途中でカラムが増えてたら・・・ https://docs.getdbt.com/docs/building-a-dbt-project/building-models/configuring-incremental-models A. on_schema_changeの設定に従った挙動をする 基本的にデフォルト挙動を sync_all_columns もしくは append_new_columns にしてdbt_project.ymlにて 書き換えて置くことをオススメ
Q.再処理したくなったら・・・ A.--full-refresh もしくは、頑張る https://docs.getdbt.com/docs/building-a-dbt-project/building-models/configuring-incremental-models 全部まるまる作り直すなら –full-refresh ログ処理等で、一分のデータだけ処理したいなら macroやpre_hook、varを駆使して頑張る
Q.upsertを実現するには・・・ A. incremental_strategyとunique_keyを用いて実現 https://docs.getdbt.com/docs/building-a-dbt-project/building-models/configuring-incremental-models ※incremental_strategyはtargetのtypeによって使える ものが変わる 基本的にはmergeでOK unique_keyを指定すると以下のように deleteしてから insertするようになったりする
(具体的にどうしたらいいのか?) 『何もわからない』!!! 通称:ダニング ⹀クルーガー曲線 きっと今この辺 {{ config(materialized=’incremental’) }}
基本のmaterializationの4つ • table • view • ephemeral • incremental 物理テーブルや物理ビューを洗替する
物理的なモノが存在しない 物理テーブルを継続して更新し、運用する
基本のmaterializationの4つ • table • view • ephemeral • incremental 物理テーブルや物理ビューを洗替する
物理的なモノが存在しない 物理テーブルを継続して更新し、運用する 一つの物理テーブルの変更操作を、 1つのモデルに抽象化する 抽象化=ソフトウェア開発のベストプラクティスの一つ
基本のmaterializationの4つ • table • view • ephemeral • incremental 物理テーブルや物理ビューを洗替する
物理的なモノが存在しない 物理テーブルを継続して更新し、運用する 一つの物理テーブルの変更操作を、 1つのモデルに抽象化する 抽象化=ソフトウェア分析のベストプラクティスの一つ incremental、それは・・・
基本のmaterializationの4つ • table • view • ephemeral • incremental 物理テーブルや物理ビューを洗替する
物理的なモノが存在しない 物理テーブルを継続して更新し、運用する 一つの物理テーブルの変更操作を、 1つのモデルに抽象化する 抽象化=ソフトウェア分析のベストプラクティスの一つ incremental、それは・・・ Analytics Engineeringの真髄の一端だった。
ご清聴ありがとうございました。
以降、ただのネタ
同じ結果になります 左と右の違いは・・・drop table if exists … cascade 左は依存先のDB Viewがcascadeドロップされない。
ネタ解説 dbt run の挙動は実は以下のような流れになってる dbt run parse (not execute) :
DBTの.sqlや.ymlを読み込んだり ref()を解析したりする。 主な成果物として manifest.jsonができる runtime (execute) : 実際にDWHに実行するための .sqlファイルのレンダリング、そして実行する .sqlのレンダリング materializationのレンダリング+実行( DRY RUNで実際にはDWHには何も実行されない) .sqlのレンダリング materializationのレンダリング+実行
ネタ解説 dbt run の挙動は実は以下のような流れになってる dbt run parse (not execute) :
DBTの.sqlや.ymlを読み込んだり ref()を解析したりする。 主な成果物として manifest.jsonができる runtime (execute) : 実際にDWHに実行するための .sqlファイルのレンダリング、そして実行する .sqlのレンダリング materializationのレンダリング+実行( DRY RUNで実際にはDWHには何も実行されない) .sqlのレンダリング materializationのレンダリング+実行 configの中身が 書き換えられる のはこのだけ DWHにSQLが 実行できるの は、ここだけ
ネタ解説 dbt run の挙動は実は以下のような流れになってる dbt run parse (not execute) :
DBTの.sqlや.ymlを読み込んだり ref()を解析したりする。 主な成果物として manifest.jsonができる runtime (execute) : 実際にDWHに実行するための .sqlファイルのレンダリング、そして実行する .sqlのレンダリング materializationのレンダリング+実行( DRY RUNで実際にはDWHには何も実行されない) .sqlのレンダリング materializationのレンダリング+実行 configの中身が 書き換えられる のはこのだけ DWHにSQLが 実行できるの は、ここだけ Parseの段階で、DWH上に実際に物理テーブルの存在を確認することはできない macroを使わずに1ファイルでtableもどきを作るには、runtimeの.sqlのレンダリング段階 で、物理テーブルの rowをdeleteする必要。
ネタ解説 Parseの段階で、DWH上に実際に物理テーブルの存在を確認することはできない macroを使わずに1ファイルでtableもどきを作るには、runtimeの.sqlのレンダリング段階 で、物理テーブルの rowをdeleteする必要。
ネタ解説 Parseの段階で、DWH上に実際に物理テーブルの存在を確認することはできない macroを使わずに1ファイルでtableもどきを作るには、runtimeの.sqlのレンダリング段階 で、物理テーブルの rowをdeleteする必要。 https://github.com/dbt-labs/dbt-core/blob/main/core/dbt/include/global_project/ macros/materializations/models/incremental/is_incremental.sql is_incremental()マクロは、Parse段階では常にFalse Runtime段階で、実際のDWH上の物理テーブルの存在を確認して、 実行時のフラグやmodelの状態もみて、True
or Falseを返している。 なので、この.sqlファイルはRuntimeの.sqlのレンダリング時にdeleteが実行される